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Abstract
New intent discovery (NID) has become a hot topic for dia-
logue system, which aims to discover the Out-Of-Domain in-
tents from conversation corpus and classify these utterances cor-
rectly. Existing methods usually focus on learning compact rep-
resentations of utterances, and leverage the clustering algorithm
to generate new intents. Inspired by the recent progress of con-
trastive learning, in this work, we propose a novel neighbor-
based contrastive learning (NCL) model to obtain clustering-
friendly representations for utterances. Specifically, to enhance
the robustness of NCL, on the one hand, we pick out diverse
samples as positive pairs by considering both the anchor neigh-
borhood and nearby neighborhood. On the other hand, we also
devise a boundary distance constraint to avoid introducing noisy
samples when extending the positives via neighbors. Extensive
experiments are conducted on three public NID datasets and the
results demonstrate the competitiveness and effectiveness of our
proposed approach.
Index Terms: new intent discovery, contrastive learning, clus-
tering

1. Introduction
With the development of conversation AI applications in recent
years, a large number of researchers employ user dialogues and
partial known intentions to train an intent recognition model,
for the reason to design an intelligent natural language under-
standing system. However, the intentions of user utterances are
rich and diverse, and may expand continuously over time, so we
can’t obtain the universal set of intents and label all the utter-
ances in advance. We raise two examples in Figure 1(a) to illus-
trate the problem above. In the first sample, intent recognization
model analyses the intent of user utterance from a known intent
set, and detects the user wants to book flight. Then, the chatbot
gives out appropriate response. While in the second sample, the
model searches the known intent set and can’t obtain the match-
ing intent, which means the intent of this sample belongs to the
unknown intent set. Therefore, new intent discovery (NID) for
intent recognition has become an important problem. To solve
this issue, we need to discover new intents from unlabeled ut-
terances, and group these unlabeled utterances into known and
newly discovered intents.

In recent years, researchers paid much attention to NID and
similar tasks. Early methods conducted representation learning
and clustering algorithm (i.e k-means) to discover new intents
[1, 2, 3, 4, 5]. Some researchers learned representations from
unlabeled data [1, 2], while some works provided some known
intents to support the discovery of unknown intents [3, 4, 5].
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Figure 1: Task illustration and comparison of different
neighbor-based contrastive learning methods.

Recent works used contrastive learning (CL) to learn sentence
embeddings better [6, 7, 8, 9, 10]. Some researchers proposed
to pre-train a universal sentence encoder by contrasting a ran-
domly sampled text segment from nearby sentences [8], some
other studies adopted a multi-head contrastive learning frame-
work to perform knowledge transfer [9, 10]. More recently, the
use of cluster-based contrastive learning framework achieved
further improvement [11, 12]. Some researchers showed that
combining a contrastive loss with a clustering objective can
improve short text clustering [11], while another study used a
kNN-based contrastive learning model with a multi-task pre-
training process [12].

Although cluster-based contrastive learning methods have
made great progress in NID task, two issues about the lack of
robustness still remain: 1) In prior study, researchers introduce
one top-k parameter to form initial positive pairs in data aug-
mentation stage, which is not fine-grained enough. 2) Previ-
ous studies didn’t use independent parameters to judge posi-
tive or negative relations of augmented data in minibatch, which
would introduce noise into training. To improve the robustness
of training, we bring up corresponding methods to handle the
issues above. As showed in Figure 1(b), we pick out diverse
top-k parameters into contrastive learning, which enhances the
robustness in data augmentation stage. Specifically, we design
an anchor neighborhood and a nearby neighborhood for each
utterance to get two views of augmented data. Then in Figure
1(c), we devise a boundary distance constraint combined with
a judging neighborhood to determine the positive or negative
relations in each minibatch, which is helpful to decrease noise.



BERT

……

……

……

……

……

……

Internal dataset

External dataset

Multi-task 
Pre-trainig NCL Clustering

two diverse neighborhoods

boundary distance

Form initial positive pairs

Judge positive and negative pairs in minibatch

𝒙𝒊

𝑵𝒊
𝒌𝟏

𝒙𝒊
′

𝒙𝒊
′′

𝑵𝒊
𝒌𝟐

𝒙𝒊
′ ∈ 𝑵𝒊

𝒌𝟏

𝒙𝒊
′′ ∈ 𝑵𝒊

𝒌𝟐

{෥𝒙𝒊
′, ෥𝒙𝒊

′′} =
𝒅𝒂𝒕𝒂_𝒂𝒖𝒈𝒎𝒆𝒏𝒕{𝒙𝒊

′, 𝒙𝒊
′′}

𝑩′ = {෥𝒙𝒊
′, ෥𝒙𝒊

′′}𝒊=𝟏
𝑴

𝒙𝒊

𝑵𝒊
𝒌𝟐

𝒙𝒊
′

𝒙𝒊
′′

𝑵𝒊
𝒌𝟑

𝒙𝒋

𝑵𝒋
𝒌𝟐

𝒙𝒋
′

𝒙𝒋
′′

𝑵𝒋
𝒌𝟑

adjacency matrix 𝑨

𝒂𝒖𝒊𝒖𝒋 = ൝
𝟏, 𝒅𝒊𝒋< 𝒔 𝒂𝒏𝒅 𝒋 ∈ 𝑵𝒊

𝒌𝟑

𝟎, 𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

𝒔

𝒔

𝒖𝒊 ∈ {෥𝒙𝒊
′, ෥𝒙𝒊

′′}

𝒖𝒋 ∈ {෥𝒙𝒋
′ , ෥𝒙𝒋

′′}

Figure 2: Framework of the proposed framework.

To summarize, we propose a novel neighbor-based con-
trastive learning (NCL) model to obtain clustering-friendly rep-
resentations for utterances, then we apply k-means for cluster-
ing. Extensive experiments are conducted on three public NID
datasets and the results indicate that our proposed model obtains
the new state-of-the-art performance.

2. Methods
2.1. Problem Definition

To develop an intent recognition model, we define the set of
all intents as I = {Ik, Iu}, which consists of known in-
tents Ik and unknown intents Iu, corresponding to the dataset
Dall

internal = {Dk, Du}. In the real scenario, we usually have
only a few labeled utterances for each known intents, so we have
Dk = {Dl

k, D
u
k}, which presents labeled and unlabeled part of

Dk. The goal of our task is to identify the unknown intents Iu
in Du, and perform correct clustering. Previous works defined
“known class ratio” (KCR), while KCL=0 means unsupervised
NID, and KCR>0 means semi-supervised NID [12]. In this
work, we consider both unsupervised and semi-supervised sce-
narios. Figure 2 shows the overall framework of our model.

2.2. Pretraining

The multi-task learning strategy enables knowledge transfer
from general intent detection tasks[13, 14]. Inspired by this,
we adopt Multi-task Pre-training (MTP) approach in our model
[12]. Following previous study [15], we use a pre-trained BERT
encoder [16] with joint pre-training losses. The losses consist
of a cross-entropy loss on external labeled data and a masked
language modelling (MLM) loss on all the internal data:

Lpre1 = Lce

(
Dlabeled

external; θ
)
+ Lmlm

(
Dall

internal; θ
)

(1)

where θ are model parameters. We choose CLINC150 [17]
as our external dataset for its diverse domains. For semi-

supervised scenaio, we can further pre-train the model by re-
placing the external data to labeled indomain data :

Lpre2 = Lce

(
Dl

k; θ
)
+ Lmlm

(
Dall

internal; θ
)

(2)

2.3. NCL

We propose a novel contrastive learning (NCL) model, which
enhances the robustness of training from two stages. Firstly, we
introduce diverse top-k paramenters to form initial positive pairs
in data augmentation stage, then we devise a boundary distance
constraint to judge positive and negative pairs in minibatch. In-
spired by CLNN [12], we firstly encode each utterances xi in
the pre-training stage and search for its top-k nearest neighbors
Ni in the embedding space. The utterances in Ni are supposed
likely to have the same intent as xi.

2.3.1. Picking Diverse Neighborhoods

As one top-k parameter would cause the lack of robustness,
we introduce two diverse neighborhoods by using k1 and k2.
We firstly construct an anchor neighborhood Nk1

i and a nearby
neighborhood Nk2

i (k1 is much smaller than k2) for each xi.
Then, for each utterance xi in minibatch B, we randomly
choose x′

i from Nk1
i and x′′

i from Nk2
i . After using data

augmentation to generate x̃′
i and x̃′′

i from x′
i and x′′

i , we get
two views of xi, which forms a positive pair. Next, we con-
struct an adjacency matrix A for the augmented batch B′ =
{x̃′

i, x̃
′′
i }Mi=1, which is a 2M × 2M binary matrix where 1 in-

dicates positive relation and 0 indicates negative relation. We
show the loss function as follow [18]:

lossi = − 1

|Ci|
∑
j∈Ci

log
exp(sim(h̃i, h̃j)/τ)∑2M
k ̸=i exp(sim(h̃i, h̃k)/τ)

(3)

L =
1

2M

2M∑
i=1

li (4)

where Ci indicates the sum of instances having positive rela-
tion with x̃i, h̃i is the embedding of x̃i, τ is the temperature
parameter.

2.3.2. Boundary Distance Constraint

In previous work [12], researchers used the same parameter top-
k to control both the range of choosing initial positive pair and
the range of judging positive pair in adjacency matrix A, which
we think should be considered separately. So, besides anchor
neighborhood Nk1

i and nearby neiborhood Nk2
i , we use a much

larger k3 to form a judging neighborhood Nk3
i , combining with

a distance boundary constraint to determine the binary value in
matrix A. Hence, we can write the formula as:

aχiχj =

{
1, dij < s and j ∈ Nk3

i

0, Otherwise
(5)

where χi ∈ {x̃′
i, x̃

′′
i }, χj ∈ {x̃′

j , x̃
′′
, }. aχiχj is the element of

adjacency matrix A, which represents the positive or negative
relationship between χi and χj . So we can infer the relationship
of x̃′

i and x̃′
j depending on the initial sample pair xi and xj . dij

is the euclidean distance between hi and hj , s is the distance
threshold, Nk3

i is the top-k3 nearest neghborhood of xi.
After the whole contrastive learning process, we use a

non-parametric clustering algorithm (for simplicity, we use k-
means) to obtain the final clustering results.



KCR Methods BANKING StackOverflow M-CID

NMI ARI ACC NMI ARI ACC NMI ARI ACC

0%

GloVe-AG 52.76 14.41 31.18 23.45 4.85 24.48 51.23 32.57 42.35
SAE-KM 60.12 24.00 37.38 48.72 23.36 37.16 51.03 43.51 52.95
SAE-DEC 62.92 25.68 39.35 61.32 21.17 57.09 50.69 44.52 53.07
BERT-KM 36.38 5.38 16.27 11.60 1.60 13.85 37.37 14.02 33.81

MTP-CLNN 81.80 55.75 65.90 78.71 67.63 81.43 79.95 66.71 79.14
NCL 82.87 58.57 68.67 77.24 66.85 80.50 80.80 68.37 80.97

25%

BERT-DTC 56.05 20.19 32.91 22.28 16.45 30.32 36.00 13.64 27.51
CDAC+ 67.65 34.88 48.79 74.33 39.44 74.30 43.89 19.65 39.37

DAC 69.85 37.16 49.67 53.97 36.46 53.96 49.83 27.21 43.72
MTP-DAC 81.48 55.64 66.12 77.22 61.42 78.60 77.79 62.88 77.02

MTP-CLNN 84.11 61.29 71.43 79.68 70.17 83.77 80.24 66.77 79.20
NCL 85.40 65.28 75.47 82.09 75.03 87.30 80.49 67.70 80.80

50%

BERT-DTC 69.68 35.98 48.87 53.94 36.79 51.78 51.90 28.94 44.70
CDAC+ 70.62 38.61 51.97 76.18 41.92 76.30 50.47 26.01 46.65

DAC 76.41 47.28 59.32 70.78 56.44 73.76 63.27 43.52 57.19
MTP-DAC 83.43 59.78 70.42 78.91 67.37 81.27 78.17 63.41 77.68

MTP-CLNN 85.62 64.93 75.23 81.03 73.02 85.64 79.48 65.71 77.85
NCL 85.78 65.11 75.42 82.03 76.02 87.7 80.81 68.15 80.63

75%

BERT-DTC 74.51 44.57 57.34 67.02 55.14 71.14 60.82 38.62 55.42
CDAC+ 71.76 40.68 53.46 76.68 43.97 75.34 55.06 32.52 53.70

DAC 79.99 54.57 65.87 75.31 60.02 78.84 71.41 54.22 69.11
MTP-DAC 85.78 65.28 75.43 80.89 71.17 84.20 80.94 68.27 80.89

MTP-CLNN 87.52 70.00 79.74 82.56 75.66 87.63 83.75 73.22 84.36
NCL 87.84 71.24 81.07 84.87 79.11 89.4 84.85 75.53 86.82

Table 1: Overall performance on the three datasets. We use NMI, ARI and ACC to evaluate each model. The model is unsupervised
when KCR=0, otherwise semi-supervised. The LAR is set to 10%.

3. Experiments
3.1. Dataset

We evaluate NCL on three popular public datasets of NID.
BANKING [19] contains more than 13000 customer messages
with 77 intents. STACKOVERFLOW [20] is a large-scale
questions dataset published online. M-CID [21] is a small cor-
pus dataset collected for covid-19 study. In addition, we choose
CLINC150 [17] as the external dataset in our pre-training stage
for its high quality annotations and the coverage of diverse do-
mains. Table 2 illustrates the statistics of these datasets.

3.2. Training details

We use bert-base-uncased model [22] as the backbone of our
model, while taking [CLS] token as the representation. For
the pre-training stage, we follow the settings of previous works
[12]. For the head of NCL, we use a two-layer fully connected
network to convert the representation dimensionality from 768
to 128. In experiments, We set the batch size as 128, and
τ as 0.1. The known class ratio (KCR) is {0%, 25%, 50%,
75%}, labeled ratio (LAR) is 10%[12]. For datasets BANK-
ING, STACKOVERFLOW and M-CID, the anchor neighbor-
hood size k1 is set to be {3,3,3}, the nearby neighborhood size
k2 is set to be {40,300,20}, the judging neighborhood size k3
is set to be {100,800,80}, and the distance threshold s is set
to be {330,300,270}. The neighborhoods are updated every 5
epochs. We use Random Token Replacement (RTR) [12] as our
augmentation method, and the replacement probability is set to
be 0.25. For model optimazation, we use AdamW [22]. All the
experiments are conducted on a single piece of Tesla P40 24GB.

3.3. Baselines

We compare NCL with several baselines: 1) Glove-AG [23]
is based on Glove embeddings and evaluated with agglom-
erative clustering. 2) SAE-KM and SAE-DEC [24] are k-
means and deep embedding clustering based on stacked auto-
encoder. 3) BERT-KM adopts k-means on BERT embeddings.
4) Bert-DTC [25] extends DEC into semi-supervised scenario.
5) CDAC+ [4] uses a pseudo-labeling process. 6) DAC [5] puts
forward a method of aligning clusters. 7) MTP-DAC and MTP-
CLNN [12] adopt a multi-task pre-training strategy, CLNN uses
an improved contrastive learning method for clustering.

3.4. Main results

Following [12], we use normalized mutual information (NMI),
adjusted rand index (ARI), and accuracy (ACC) as the evalu-
ation metrics. The overall results of all the models on three
datasets are shown in Table 1, in which we can get some inter-
esting conclusions. Firstly, all methods perform better under the
semi-supervised (KCL = 25%, 50%, 75%) scenario compared
to the unsupervised (KCL = 0%) scenario , which indicates la-
beled data can help the model to learn the granularity of cluster-
ing. Then, contrastive learning based methods outperform other
approaches in our experiments, which demonstrates contrastive
learning can benefit the representation learning of utterances.
In addition, our proposed NCL performs a little bit better than
MTP-CLNN in the unsupervised scenario, while it reaches the
new state-of-the-art performance in the semi-supervised setting.
Specifically, NCL achieves 1.11% improvement on average in
NMI, 1.90% improvement on average in ARI and 2.20% im-



Datasets Domain Intents Volume

CLINN150 general 120 18000
BANKING banking 77 13083
STACKOVERFLOW questions 20 20000
M-CID covid-19 16 1745

Table 2: The statistics of experimental datasets.

Figure 3: Performances on different k1 and s.

provement on average in ACC over all semi-supervised settings.

4. Discussion
4.1. Hyper-parameter Tuning of k1 & s

Here we study how k1 & s influence the model performance
in Figure 3. We set various k1 on BANKING while LAR =
10% and KCR = 75%. With the growth of k1, we can find
MNI, ARI and ACC first increase and then decrease. Our model
achieves the best performance when k1 = 3, better than k1 = 1
(it is equal to the model without anchor neighborhood), which
indicates the proposed anchor neighborhood can help improve
the model. We argue that the method of picking diverse top-k
enhances the robustness indeed, while the k1 value should not
be too large, in order to maintain high similarity between xi and
x′
i. On the other hand, we experiment on various s, using the

same settings as above. The results indicates experiments with
too large s may not decrease noise adequately, while too small
s leads to the generalization reduction. Moreover, our model
achieves the best performances when s = 330, so this threshold
is more suitable and closer to the real boundary distance for
most intents in the dataset.

4.2. Ablation Study of Distance-based Constraint

To judge positive or negative pairs in the contrastive learning,
we use a boundry distance s combined with a judging neigh-
borhood Nk3

i . To analyse the importance of this combination,
we conduct a set of ablation experiments in Figure 4. The three
sets of histograms respectively show the results of experiments
with original settings, without s, and without k3. Obviously,
while maintaining both s & k3, we obtain the best performance.
Once we remove either of them, the results will get worse. The
method without s performs better than the method without k3,
which indicates the influence of judging neighborhood Nk3

i is
dominant compared with boundry distance s.

4.3. Visualization of Clustering

In Figure 5, we use Principal Component Analysis (PCA) to
show the visualization of embeddings on STACKOVERFLOW
by comparing strong baseline MTP-CLNN [12] and our NCL
model. It shows our method makes the confused clusters more

Figure 4: Ablation study of distance-based constraint.

Figure 5: Visualization results on STACKOVERFLOW.

distinct with each other. Especially, we concentrate on com-
parison of two groups’ clustering effect. In group A, we find
NCL makes a better distinction between the red cluster and the
other two clusters, while the three clusters are relatively close in
MTP-CLNN. In group B, NCL reduces the confusion of black
and blue clusters compared to MTP-CLNN. Results on other
datasets also show similar effects.

5. Conclusions
In this paper, we propose a novel neighbor-based contrastive
learning framework for NID task. We first introduce diverse
top-k parameters into our novel contrastive learning, which en-
hances the robustness by using Nk1

i and Nk2
i as the selection

range of initial positive pairs before data augmentation. Then
we use a boundry distance threshold combined with Nk3

i range
to determine the positive or negtive relationship between aug-
mented data in every minibatch, which enhances the robust-
ness by decreasing noise. Experimental results on three public
datasets indicate our model outperforms all the baseline models
on the IND task. In the future work, we will further improve
our method from how to form initial positive pairs and judging
positive or negative relationship between augmented data. For
example, we may set dynamic parameters k1 and k2 for differ-
ent samples, or we can propose more universal multi-metrics
for judging the relationship of augmented data.
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