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Abstract

High-performance traffic flow prediction model designing,
a core technology of Intelligent Transportation System, is a
long-standing but still challenging task for industrial and aca-
demic communities. The lack of integration between phys-
ical principles and data-driven models is an important rea-
son for limiting the development of this field. In the litera-
ture, physics-based methods can usually provide a clear in-
terpretation of the dynamic process of traffic flow systems
but are with limited accuracy, while data-driven methods, es-
pecially deep learning with black-box structures, can achieve
improved performance but can not be fully trusted due to lack
of a reasonable physical basis. To bridge the gap between
purely data-driven and physics-driven approaches, we pro-
pose a physics-guided deep learning model named Spatio-
Temporal Differential Equation Network (STDEN), which
casts the physical mechanism of traffic flow dynamics into
a deep neural network framework. Specifically, we assume
the traffic flow on road networks is driven by a latent po-
tential energy field (like water flows are driven by the grav-
ity field), and model the spatio-temporal dynamic process
of the potential energy field as a differential equation net-
work. STDEN absorbs both the performance advantage of
data-driven models and the interpretability of physics-based
models, so is named a physics-guided prediction model. Ex-
periments on three real-world traffic datasets in Beijing show
that our model outperforms state-of-the-art baselines by a sig-
nificant margin. A case study further verifies that STDEN can
capture the mechanism of urban traffic and generate accurate
predictions with physical meaning. The proposed framework
of differential equation network modeling may also cast light
on other similar applications.

Introduction
Rapid urbanization has brought about the growth of urban
population, and presented huge transportation and sustain-
ability challenges to modern cities. Intelligent Transporta-
tion System (ITS) has become an active research area be-
cause of its potential to improve transportation efficiency
and solve the sustainability problem of cities (Snyder and
Do 2019). As the core technology of the ITS, traffic flow
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prediction, aiming at forecasting the future status of traffic
systems given historical observations, plays a crucial role in
many important urban applications, such as public safety,
congestion management and navigation (Li et al. 2020).

In the literature, traffic flow prediction methods mainly
fall into two categories: physics-based and data-driven.
The former one usually relies on traffic flow theory (Ni
2015), which represents traffic system as coupled Differen-
tial Equations (DEs). Traffic flow prediction is then achieved
through conducting system simulation governed by these
DEs. The physics-based models are able to guarantee the
simulation results consistently represent the traffic dynam-
ics over the entire domain, not only where it was calibrated
by observation data. However, these models usually make
strong assumptions about traffic flow with a small set of pa-
rameters (Mo, Shi, and Di 2021), which may not be able
to capture the complex human behaviors and the uncertain
factors in real-world traffic. Besides, the simulation process
relies on solving DEs through numerical differentiation and
integration techniques, which requires a lot of computing re-
sources (Wang et al. 2020).

The second category is data-driven methods, which usu-
ally utilize historical observational data to train a statistical
learning model, and then use the trained model to generate
predictions. Among the data-driven methods, the most rep-
resentative branch is traffic flow prediction based on deep
learning. For example, using recurrent neural networks (Li
et al. 2018) or temporal convolution (Wu et al. 2019) to
model temporal dependencies, using convolutional neural
networks (Tang et al. 2020) to capture spatial correlations,
and using graph convolutional (Song et al. 2020; Tian and
Chan 2021) to introduce road network information into traf-
fic prediction. In recent years, with a huge volume of traf-
fic data becoming available, the deep learning-based data-
driven methods have drawn great attention from both in-
dustry and academia, and achieved great success in many
real-world applications. However, these methods also have
defects. First, without the physical knowledge to guarantee
generalization ability, the data-driven models are very likely
to lose effectiveness in scenarios that are not sampled by
the training data. Second, the “black-box” structure of deep
learning models introduces unknown risks in the ITS, which
may cause potential threats to urban safety.
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To bridge the gap between data-driven and physics-based
approaches, we raise a hybrid modeling paradigm, Physics-
Guided Deep Learning, for traffic flow prediction. Specifi-
cally, we propose a Spatio-Temporal Differential Equation
Network (STDEN1) that combines the physical mechanism
of traffic dynamics and end-to-end deep learning into a
whole framework. Our idea is based on the key assumption
that traffic flow on road networks is driven by a latent po-
tential energy field (like water flows are driven by the grav-
ity field). The latent potential energy field follows physical
constraints that reflect the transport of energy (Lienhard and
Lienhard 2008). These constraints take the form of differ-
ential equations (DEs) commonly used in physics. To cap-
ture complex functions in the potential energy field DE in a
learnable manner, we extend the existing ordinary DE net-
work (Chen et al. 2018) by replacing the differential opera-
tor with graph Laplacian and design a graph neural network
for spatio-temporal road networks. The overall framework
of STDEN consists of an encoder that maps traffic flow into
latent potential energy fields, a DE network that predicts the
dynamics of potential energy fields continuously over time,
and a decoder that generates traffic flow predictions from
the latent potential energy fields. Evaluations on real-world
traffic datasets show that STDEN consistently outperforms
state-of-the-art traffic prediction baselines by a large mar-
gin in terms of prediction accuracy. Moreover, the learned
potential energy field can potentially reveal the evolution of
urban dynamics, thereby explaining changes in traffic flow.
In summary, our contribution is three-fold:
• We model the fundamental physical mechanism of urban
dynamics using potential energy fields, and introduce the
physical mechanism into a data-driven deep learning model
for traffic prediction. To the best of our knowledge, this is
the first work that proposes a physics-based and data-driven
mixed, i.e., physics-guided, deep learning model for traffic
flow prediction on road networks.
•We propose a novel hybrid deep learning model, STDEN,
that unifies the traffic potential energy field DE and neural
networks into one framework. This modeling paradigm may
cast light on other DE-based applications, such as weather
forecasting and epidemic prediction.
• We conduct extensive experiments on three real-world
traffic datasets, and the proposed method achieves signifi-
cant improvement over state-of-the-art baselines. Moreover,
a case study confirms that the learned potential energy field
can reveal the physical mechanism of traffic flow and pro-
vide interpretability for the deep traffic prediction model.

Preliminaries
We study the traffic flow prediction problem over urban road
networks. A list of major symbols is in Tab. 1.
Definition 1 (Road Network). A Road Network is a directed
graph G = (V, E ,W ), where V = {v1, . . . , vn} is a set of
nodes, E ⊆ V × V is a set of edges, and W ∈ Rn×n is a
weighted adjacency matrix. A node vi ∈ V represents a road
junction or a road end, while an edge eij ∈ E represents a
directed road segment from node vi to node vj .

1The code is available at https://github.com/Echo-Ji/STDEN

Sym. Domain Descriptions

n R Number of nodes in a road network
W Rn×n Adjacency matrix of a road network
f (t) R|E| Traffic flow of a road network at time t
z(t) Rn Potential field of a road network at time t
u, q R Energy density, energy flux
φ Rn Node volume
α−1 R Contribution ratio of traffic flow

Table 1: List of major symbols and descriptions.

(a) Traffic flow (b) Traffic potential energy field

Potential energy at road junction
Road junction or road end

Traffic flow on road segment

Traffic flow driven by energy field

Figure 1: Illustration of traffic flow and potential energy field
defined on road networks. The arrow indicates the traffic
flow direction while its size denotes the flow volume. In
panel (b), higher cylinder means more potential energy, and
the traffic flow volume (arrow size) increases with the en-
ergy gradients between adjacent nodes.

Definition 2 (Traffic Flow). We define Traffic Flow as a fea-
ture of edges in the road network. Given an edge eij , the
overall traffic flow during a give time period is denoted as
fij . We express the traffic flow of the whole road network as
a vector f = (fij) ∈ R|E|. |E| is the size of the edge set.

Definition 3 (Traffic Potential Energy Field (PEF)). For
each node i of a road network G, we define the Traffic Po-
tential Energy zi ∈ R as its feature. The Traffic Poten-
tial Energy Field on the whole road network is denoted as
z = (z1, . . . , zn)> ∈ Rn.

As shown in Fig. 1, the potential energy field on the road
network is the latent dominated force of the traffic flow,
which is similar to the gravity field driving water flow. The
traffic flow of the corresponding edge is the potential energy
gradient between adjacent nodes,

fij = −(∇z)ij = −(zi − zj), (1)

where ∇ is the graph gradient operator, and the negative
sign ahead of∇ indicates the direction of flow. According to
Eq. (1), the traffic flow on the road network can be explained
as a “energy transport” process of the traffic potential energy
field. This is a fundamental insight of our model.
Definition 4 (Flow-sequence and PEF-sequence). We divide
time as regular time slices. Let f (t) represent traffic flow ob-
served at time slice t ∈ N. Flow-sequence is the time series
of traffic flow F (0:t) =

(
f (0), . . . ,f (t)

)
, while PEF-sequence

is that of PEF Z(0:t) =
(
z(0), . . . , z(t)

)
.
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Figure 2: Overview of the proposed physics-guided model.
STDEN: Spatio-Temporal Differential Equation Network.
PGFM: Physics-Guided traffic Flow Modeling. PF-Trans:
transformation between the PEF and traffic flow (Eq. (5)).

Problem Definition
Based on the basic concepts above, we formally define the
problem of traffic flow prediction as follows.
• Input: The history flow-sequence from time t−T + 1 to t,
F (t−T+1:t), the future flow-sequence from time t+1 to t+H,
F (t+1:t+H), and the corresponding road network G.
• Output: A model m(·) satisfying F̂ (t+1:t+H) =

m
(
F (t−T+1:t)

)
.

• Objective: Minimizing prediction errors of training data.

Physics-Guided Traffic Flow Modeling
The Model Framework
Data-driven methods directly model the correlation between
F (t−T+1:t) and F (t+1:t+H) to generate predictions. We in-
novatively propose a physics-guided traffic flow prediction
framework (see Fig. 2), consisting of two parts: an explicit
deep learning model STDEN and an implicit physical dy-
namic process PGFM. In PGFM, i.e.,Physics-Guided traffic
Flow Modeling, we use a physics-based continuity equation
to model the transformation between the PEF and the traffic
flow (denoted as PF-Trans in Fig. 2). Details of the implicit
PGFM will be given in this section.

Over the implicit physical dynamic process, we imple-
ment a deep neural network model, Spatio-Temporal Dif-
ferential Equation Network (STDEN), which contains three
components: an RNN-based network to encode the traffic
flow-sequence as the initial state of PEF, a DE network to
predict the evolution of the PEF, and a decoder governed by
Eq. (1) to generate traffic flow from the predicted PEF. Note
the layers of DE-Net correspond to the dynamic of potential
energy in PGFM. Details of STDEN are in the next section.

In our model, the physical dynamic process and the deep
learning model are unified under the same framework, that is
why we call our model a “physics-guided” neural network.

Physics-Based Continuity Equation
In this section, we use a continuity equation to model the re-
lations between the flow-sequence and PEF-sequence. First,
we provide a brief introduction to the continuity equation.

Potential energy field −→ Energy field
Potential energy per unit volume −→ Energy density

Traffic flow −→ Energy flux

Table 2: Analogy from potential energy-driven traffic flow
to energy continuity equation.

In physics, the continuity equation describes the transport
of some physical quantity, such as mass, energy, momentum,
electric charge (Lienhard and Lienhard 2008). Here we take
the transport of energy as an example. Using the continuity
equation, the energy transport process over a set of locations
could be described as

∂u

∂t
+ div q = 0, (2)

where u is the energy density (energy per unit volume), q
is the Energy Flux (a measure of energy “transport”), and
div is the divergence operator. The differential equation in
Eq. (2) gives a relation between the volume of the energy
and the “transport” of that energy, i.e., the change of energy
density leads to energy transport in the space. For example,
heat always transports from hot locations to cold locations.

Continuity Equation for Traffic PEF
The traffic flow driven by traffic potential energy fields in
a road network is naturally a specific example of the con-
tinuity equation. In Tab. 2, we draw an analogy between
the potential energy-driven traffic flow and the energy con-
tinuity equation, where traffic flow on a road network could
be considered as energy transport within a Potential Energy
Field. In this section, we propose a continuity equation for
traffic PEF to describe the dynamic relations between flow-
sequence and PEF-sequence of a road network.

Energy Density and Traffic Potential Energy. Given a
road network G = {V, E ,W}, for vi ∈ V , we define it hav-
ing a Energy Density ui. The potential energy of the vi is
proportional to its energy density as zi = φi ·ui, where φi is
the trainable node volume. The node volume is determined
by the endogenous feature of the node, which is in analogy
with the mass in the gravity field. For all nodes in V , we have
the relation between the potential energy z = (z1, . . . , zn)>

and the energy density u = (u1, . . . , un)>

z = φ� u, (3)

where φ = (φ1, . . . , φn)> and � is the Hadamard product.

Energy Flux and Traffic Flow. In a traffic system defined
on G, the traffic potential energy can only be transported
along the edges (road segments) in the edge set E . So we de-
fine the Energy Flux of eij ∈ E as qij . We consider the traffic
flow fij as the major component of the energy flux qij , and
introduce a shared parameter α to measure the contribution
ratio of the traffic flow to energy flux for every edge,

f = α−1q, (4)

where f = (fij)
> and q = (qij)

>.
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Potential Energy DE Function. Plugging Eq. (3) and (4)
into the energy continuity equation in Eq. (2), we have

φ−1 � ∂z

∂t
+ α div f = 0, (5)

which is the continuity equation for energy transport in the
traffic potential energy field. According to Eq. (1), traffic
flow on edges of a road network is the gradient of poten-
tial energy between adjacent nodes, i.e.,f = −∇z. Using it
to replace the traffic flow f in Eq. (5), we have

φ−1 � ∂z

∂t
− α div∇z = 0. (6)

This function is a Differential Equation (DE) about the po-
tential energy field z, so we name it as Potential Energy
Field DE. The graph Laplacian operator ∆ is given by the
divergence of the gradient (Bronstein et al. 2017), i.e.,∆ =
− div∇, so the potential energy field DE can be transformed
into

∂z

∂t
= −φ� (α∆z) . (7)

Physics Interpretation of the Potential Energy Field DE.
Eq. (7) is the dynamical equation to express the evolution of
the PEF-sequence Z =

(
z(t)

)
. From a discrete perspective,

Eq. (7) could be expressed as the form of

z(t+1) = z(t) − φ�
(
α∆z(t)

)
, (8)

which gives an evolution trajectory of the PEF-sequence Z.

Spatio-Temporal Differential Equation
Network

In Eq. (7), the evolution of PEF-sequence is expressed as a
Potential Energy Field DE form. In this section, we imple-
ment Eq. (7) using a neural network approach to enhance
the modeling capability of the potential energy DE for real-
world traffic data. The framework of our model is in Fig. 2.

Differential Equation Network
Our method is based on the neural ordinary Differential
Equation Network (DE-Net) (Chen et al. 2018), which is a
kind of model that generalizes standard layer-to-layer neu-
ral networks as a continuous form. Specifically, in standard
residual networks (He et al. 2016), the layer-to-layer state
update process is in the form of

ht+1 = ht + F(ht, θt), (9)

where ht is hidden state of (i.e., layer outputs) of the t-th
layer2. F(·) is the repeated network structure of the residual
networks and θt is the network parameters at layer t.

Eq. (9) could be rewritten as a generalized form as

ht+l − ht

(t+ l)− t = F(ht, θt), (10)

2In our model, the layer of DE-Net just corresponds to time
slices, so we use t as the index of the network layers in Eq. (9).

where l is the step size and its value is 1 in residual networks.
When l→ 0, the update process of state h becomes

∂h(t)

∂t
= F (h(t), t, θ) , (11)

which is a continuous version of the residual networks. In
Eq. (11), the deep residual neural network becomes a dy-
namic system that is governed by an ordinary differential
equation (Ruthotto and Haber 2019; Lu et al. 2018). More-
over, the function F(·, θ) is a neural network, which provides
powerful representation learning capacity for complex data.

DE-Net for Traffic Potential Energy Fields

DE-Net on Potential Energy Fields. Inspired by the neural
ordinary differential equation network, we model the poten-
tial energy field DE in Eq. (7) as,

∂z(t)

∂t
= FG

(
Φ, t, z(t)

)
, (12)

where Φ represents all trainable parameters including φ
and α. The function FG is a neural network guided by the
physics model in Eq. (7). According to Eq. (7), we express
the function FG as a residual graph convolution network
(GCN) form, where the repeated neural network layer is in
the form of

FG
(

Φ, t, z(t)
)

= −φ� Tanh (α∆z) . (13)

where ∆ is the graph Laplacian operator to calculate the dif-
ferences between the state zi of the node i and its neighbor’s.
This is equivalent to using α as a convolution kernel to ag-
gregate the states of nodes in a receptive field. Tanh(·) is
a Hyperbolic Tangent activation function. The results of the
convolution are combined using the weights from φi.

From the spatial perspective, if we set t as a discrete value,
Eq. (13) is equivalent to a residual GCN, where inputs of
each layer are z(t) for all nodes of the road network. From
the temporal perspective, the time t is continuous, meaning
we can calculate z(t) for any t ∈ R. Therefore, we name the
proposed model based on the differential equation network
in Eq. (13) as Spatio-Temporal DE Network.

Encode Traffic Flow into Potential Energy Fields. In our
model, the PEF-sequence Z(t1:tH) can be calculated using a
neural ODE solver (Chen et al. 2018) for a given initial state
z(t0),

Z(t1:tH ) = ODEsolver
(
FG ,Φ, z(t0), [t0, . . . , tH ]

)
, (14)

where z(t0) is sampled from a distribution p
(
z(t0)

)
. We im-

plement the distribution as a conditional probability distribu-
tion of historical traffic flow sequence F (t0−T+1:t0). Specif-
ically, we let z(t0) is generated from a Gaussian distribution,
where the mean and standard deviation are determined by
the historical traffic flow sequence F (t0−T+1:t0) as

p
(
z(t0)

∣∣∣F (t0−T+1:t0)
)

= N
(
µz(t0) , σz(t0)

)
,

where
{
µz(t0) , σz(t0)

}
= g

(
GRU

(
F (t0−T+1:t0)

))
.

(15)
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We employ Gated Recurrent Unit (GRU) (Chung et al. 2014)
as encoder to extracts information fromF (t0−T+1:t0). g(·) is
a fully connected network to translate the final hidden states
of GRU into the mean and standard deviation of z(t0).

To achieve a differentiable “sampling” operation, we
adopt a reparametrization trick (Kingma and Welling 2014)
to implement generation process g(·) of z(t0) in Eq. (15). In
specific, given a batch of training data, we calculate z(t0)i of
each node i as

z
(t0)
i = µz(t0) + εiσz(t0) , (16)

where εi is sampled from a standard normal distribution
N (0, 1). In this way, z(t0)i for a given batch of training data
are fixed, and therefore, Eq. (16) is differentiable in back-
propagation algorithm for neural network training. In the
prediction phase, the εi is sampled for every input example.

Generate Traffic Flow from Potential Energy Fields.
Given the initial z(t0), we can calculate the entire PEF-
sequence Z(t1:tH) for future time steps. Next, we generate
the flow-sequence F (t1:tH) from Z(t1:tH) by Eq. (1).

The Model Training
With the pipeline introduced above, we build a physics-
guided latent variable model entitled Spatio-Temporal Dif-
ferential Equation Network (STDEN). Using the backprop-
agation algorithm, the entire framework can be trained in
an end-to-end manner by minimizing the negative log-
likelihood of the predicted traffic flow-sequence with the
ground truth in training data. The only difference compared
with the training of standard neural network is the forward
propagation of the DE-Net part needs to calculate using the
neural ODE solver in Eq. (14).

Remark: In our model, the physical generation process of
traffic flow in a potential energy field is expressed as deep
residual GCN based DE-Net, providing a good explanation
for our model structure. In other words, our model is not
a complete “black-box” as other deep learning models. It
could be considered as a kind of physics-guided generative
model and therefore be expected to have better performance.
Moreover, the elaborate residual DE-Net structure and the
measure of uncertainty in potential energy fields also have
the potential to improve the prediction performance.

Experiments
Datasets
We evaluate the performance of our model over the real-
world urban traffic dataset collected by the Beijing Munic-
ipal Commission of Transport, which contains trajectories
of 40,000 taxies in Beijing from April 1st 2015 to July 31st
2015 (totally 4 months). These trajectories mapped to the
road networks using the map matching algorithm. We statis-
tic the traffic flow by counting the number of taxis on each
road segment during every 5-minute time interval, resulting
in 288 data points per day.

Due to Beijing road networks are too complex, we select
three sub-networks to construct datasets of our experiments.
Without loss of dataset diversity, the selected sub-networks

have different urban functions. The first one is a well-known
entertainment area, i.e., Gong Ti (Workers’ Stadium), which
has 221 road segments, the second is the area around Beijing
West Railway Station, which has 393 road segments, and the
last area is around the biggest business park in Beijing, i.e.,
Zhongguancun (China Silicon Valley), which has 564 road
segments. We denote the three datasets as GT-221, WRS-
393, and ZGC-564 respectively. We split each dataset into
the training, validation, and test sets with a ratio of 7:1:2.
For multi-step prediction, we use one-hour historical traffic
flow data (12 time steps) to predict the next hour’s.

Experimental Settings

Baselines. We consider ten baselines that belong to three
classes. (1) Time series modeling: We take Historical Av-
erage (HA), Vector Auto-Regression (VAR) and GRU as
baselines. The history traffic flow-sequence are treated as
purely time series to predict the futures state without con-
sideration of spatial information. (2) Graph-based spatio-
temporal methods: The classical graph-based tarffic predic-
tion methods such as Diffusion Convolution Recurrent Neu-
ral Network (DCRNN) (Li et al. 2018), Spatial-Temporal
Graph Convolutional Network (STGCN) (Yu, Yin, and Zhu
2018) and Graph WaveNet (GWNET) (Wu et al. 2019),
and state-of-the-art models such as Adaptive Graph Con-
volutional Recurrent Network (AGCRN) (Bai et al. 2020)
and MTGNN (Wu et al. 2020) are used for comparison.
(3) Approaches based on neural differential equation net-
works: Here we use two classical methods Latent-ODE
(LODE) (Rubanova, Chen, and Duvenaud 2019) and ODE-
LSTM (OLSTM) (Lechner and Hasani 2020) for compar-
ison. Latent-ODE generalizes RNNs to have continuous-
time hidden dynamics defined by ordinary differential equa-
tions (ODEs). ODE-LSTM is a novel long short term mem-
ory network, that possesses a continuous-time output state,
and consequently modifies its internal dynamical flow to a
continuous-time model.

Settings. The settings of STDEN contains the following two
parts: (1) Settings of the DE-Net part. We model the dy-
namics of potential energy in latent space using an adap-
tive method dopri5 (Dormand and Prince 1980), and con-
duct grid search on the latent dimension over {1, 2, 4, 8}. (2)
Settings of the encoder. GRU is used to encode the distribu-
tion of the initial value of the PEF-sequence. The number
of hidden units in GRU is searched over {16, 32, 64, 128}.
More implementation details about our STDEN and other
baselines settings are given in Appendix. We conduct exper-
iments of all deep learning models with 7 different seeds and
report the mean results.

Performance Comparison
Tab. 3 shows the comparison of different approaches for 15
minutes, 30 minutes, and 1 hour ahead forecasting on three
datasets. These methods are evaluated by three commonly
used metrics in traffic flow prediction, including mean abso-
lute error (MAE), root mean square error (RMSE), and mean
absolute percentage error (MAPE).
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T Metric HA VAR GRU STGCN DCRNN GWNET AGCRN MTGNN LODE OLSTM STDEN
G

T-
22

1

15
m

in MAE 1.324 1.125 0.988 0.976 0.976 0.967 0.968 0.962 0.981 0.978 0.865
RMSE 1.835 1.581 1.511 1.528 1.520 1.516 1.502 1.505 1.531 1.522 1.317
MAPE 61.47 52.34 42.77 41.40 41.10 40.70 41.18 40.88 42.11 42.87 36.72

30
m

in MAE 1.324 1.141 1.000 0.988 0.994 0.980 0.981 0.976 0.992 0.986 0.872
RMSE 1.835 1.620 1.541 1.552 1.553 1.540 1.525 1.531 1.544 1.561 1.328
MAPE 61.47 52.03 42.95 42.08 41.75 41.23 41.73 41.40 42.71 41.80 37.37

1
ho

ur MAE 1.324 1.164 1.018 1.008 1.020 1.006 1.004 1.003 1.011 1.007 0.896
RMSE 1.835 1.835 1.578 1.585 1.601 1.581 1.561 1.576 1.588 1.579 1.360
MAPE 61.47 51.51 43.29 43.20 42.46 42.12 42.79 42.36 43.28 43.22 39.04

W
R

S-
39

3

15
m

in MAE 1.239 1.070 0.823 0.803 0.803 0.801 0.799 0.792 0.818 0.809 0.730
RMSE 1.735 1.509 1.393 1.400 1.386 1.390 1.382 1.376 1.402 1.391 1.241
MAPE 64.08 55.51 35.52 33.20 33.51 33.50 33.28 32.91 35.33 35.28 31.62

30
m

in MAE 1.239 1.097 0.837 0.818 0.826 0.818 0.814 0.807 0.827 0.818 0.737
RMSE 1.735 1.568 1.429 1.436 1.435 1.427 1.414 1.411 1.433 1.428 1.244
MAPE 64.08 55.72 36.00 33.69 34.46 33.95 33.96 33.34 35.77 35.12 32.04

1
ho

ur MAE 1.239 1.139 0.856 0.841 0.858 0.845 0.841 0.834 0.853 0.848 0.745
RMSE 1.735 1.653 1.477 1.490 1.500 1.488 1.468 1.469 1.482 1.478 1.266
MAPE 64.08 56.01 36.10 34.31 35.83 34.37 34.93 34.01 35.87 35.14 33.25

Z
G

C
-5

64

15
m

in MAE 1.120 0.978 0.729 0.714 0.715 0.716 0.709 0.708 0.723 0.718 0.623
RMSE 1.522 1.402 1.229 1.218 1.230 1.232 1.210 1.207 1.226 1.219 1.026
MAPE 62.68 53.72 33.82 32.63 31.99 31.31 32.19 32.64 32.98 32.75 28.81

30
m

in MAE 1.120 0.991 0.734 0.724 0.727 0.725 0.717 0.714 0.730 0.725 0.628
RMSE 1.522 1.393 1.242 1.241 1.258 1.255 1.228 1.222 1.263 1.252 1.036
MAPE 62.68 53.64 33.99 33.13 32.34 31.32 32.66 32.90 33.78 32.65 29.14

1
ho

ur MAE 1.120 1.019 0.747 0.738 0.746 0.743 0.733 0.731 0.742 0.740 0.657
RMSE 1.522 1.441 1.266 1.272 1.298 1.296 1.259 1.255 1.281 1.274 1.033
MAPE 62.68 53.85 34.55 33.78 32.86 32.50 33.24 33.54 33.98 33.36 31.58

Table 3: Model comparison on metrics MAE/RMSE/MAPE, where MAPE is in %. Our STDEN significantly outperforms all
competing baselines with regard to all metrics over all datasets according to Student’s t-test at level 0.01.

There are four observations from Tab. 3. (1) The
graph neural network-based spatio-temporal methods gen-
erally outperform the time series models, which em-
phasizes the importance of modeling the spatial corre-
lations of road networks for traffic prediction. (2) Our
STDEN improves spatio-temporal methods with a signif-
icant margin (an average 10.29%/13.49%/6.03% improve-
ment on MAE/RMSE/MAPE compared with the second
best method) and achieves the best performance for all hori-
zons on all the metrics, which shows the effectiveness of
the potential energy field DE to model the continuous spa-
tial and temporal dynamics. (3) The approaches based on
purely neural differential equation network are not effec-
tive than the spatio-temporal ones. Because they ignore the
spatial correlation which is important to traffic flow predic-
tion. However, they outperform the traditional time series
methods. (4) Traditional methods including HA and VAR
are not good enough due to their incapability of handling
complex and non-linear spatio-temporal data. Besides, the
performance of HA is invariant since this method does not
depend on short-term data.

Ablation Study
To better illustrate the effectiveness of the Potential Energy
Field DE in Eq. (7), we compare STDEN with the following
variants: (1) UnkP, which means unknown physics and re-

UnkP IncP STDEN

MAE MAPE(%) RMSE

G
T-

22
1

W
R

S-
39

3
ZG

C
-5

64

Figure 3: Evaluation on potential energy field differential
equation over all datasets.

places the potential energy field DE with a fully connected
neural network. (2) IncP, which denotes incomplete physics
and ignores the energy volume factor φ in the potential en-
ergy field DE, making it incomplete.

Fig. 3 shows the comparison of the two variants with re-
gard to all metrics for different datasets. From the results,
we have the following observations: (1) STDEN surpasses
NoP by a large margin, demonstrating the superiority of de-
ploying potential energy fields to model traffic flow. (2) That
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Figure 4: Computation overhead vs. Prediction accuracy.
NFE denotes number of function evaluation.

IncP beats UnkP shows the effectiveness of the potential en-
ergy field DE. The guidance of physical process expressed
by the potential energy field DE introduces the diffusion
process of energy in space. This allows IncP to capture the
changing trend of potential energy fields throughout the road
network. (3) However, IncP performs slightly worse than
STDEN because of the absence of the energy volume fac-
tor φ. Without φ, IncP has to infer the potential energy only
through the energy density, which is as hard as to calculate
the mass of an object from density without object volume.

Computation Cost
During the solving process of the differential equation net-
work, we utilize an ODE solver which allows our method to
dynamically balance the trade-off between prediction accu-
racy and the computation cost. As shown in Fig. 4(a), 4(b)
and 4(c), required number of function evaluation (NFE) in-
creases consistently with the epochs, there is no stable stage
because we set early stopping for the training process. Note
that NFE varies with the difficulty of tasks. For example,
flow prediction of GT-221 is the most complicated among
all three tasks because the traffic flow in GT-221 changes
more drastically. Therefore, the NFE is around 80% more
than that of ZGC-564. From Fig. 4(d), 4(e) and 4(f), it can
be observed that the more evaluation (NFE), the lower the
prediction error our method can achieve. This allows us to
trade accuracy for faster response for emergency events dur-
ing inference phase, which is very valuable in practice.

Case Study
In this part, we qualitatively analyze why our STDEN
can yield good performance. To this end, we visualize the
learned potential energy and the real traffic flow in Fig. 5.

Fig. 5(a) and (c) shows the potential energy learned by
STDEN and UnkP by a heat map, with real traffic flows
at the corresponding moment represented by arrows. To see
more clearly how the potential energy drives traffic flow, we
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Figure 5: Visualization of the learned potential energy fields
and real traffic flow on GT-221 dataset. The heat map rep-
resents the potential energy fields, while the arrows denote
traffic flow with its volume reflected by the color and the ar-
row size. The potential energy fields learned by STDEN can
interpret the traffic flow.

select loop areas with complex traffic for detailed analysis.
In Fig. 5(b), traffic always flows along the road network from
a place with high potential energy to a place with low poten-
tial energy. Besides, the gradient of potential energy roughly
reflects the relative magnitude of the traffic flow. This shows
that potential energy governed by physical equation captures
the mechanism of traffic flow and can be interpreted as a
force that drives traffic flow. However, without the guidance
of potential energy field DE, the energy learned by neural
networks in UnkP (Fig. 5(d)) has no physical meaning and
can not indicate the traffic flow mechanism. For example,
there are some traffic flows that transport from a low-value
node to a high-value node in Fig. 5(d), which violates the
physical constraint of the energy transport process.

In a word, the results in this section verifies that STDEN
can capture the physical mechanism of traffic flow (Fig. 5)
and generate accurate predictions (Tab. 3) under the guid-
ance of the potential energy field DE. This is because we
combine the advantages of physics-based and data-driven
methods.

Related Work

Traffic Prediction. Traffic prediction problem has been
studied for decades, and existing methods mainly fall into
two categories: physics-based and data-driven. In the for-
mer one, researchers apply different branches of traffic flow
theory depending on the application problems (Ni 2015),
such as the kinematic wave theory (Daganzo and Laval
2005), the car-following theory (Olstam and Tapani 2004),
and the queuing theory (Cascetta 2013). However, they may
only capture limited dynamics of real-world traffic, result-
ing in low-quality estimation of traffic flow. The data-driven
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approaches have drawn considerable attentions (Xie et al.
2020). The shallow machine learning methods for traffic
prediction usually base on the stationary assumptions (e.g.,
ARIMA and Kalman filtering(Lippi, Bertini, and Frasconi
2013)), leading to limited representation power. Deep learn-
ing methods are free from stationary assumptions and ef-
fective to capture complex non-linearity using models such
as recurrent neural networks (Li et al. 2018) and temporal
convolutional networks (Wu et al. 2019; Li and Zhu 2021).
Because traffic data is spatial correlated, CNN (Tang et al.
2020) and its extension to arbitrary graphs (Song et al. 2020;
Tian and Chan 2021) are utilized to capture spatial corre-
lations. Although temporal dependencies and spatial corre-
lations have been considered in these methods, the lack of
physical knowledge leads to a lack of generalization ability
to out-of-sample scenarios.

Physics-Guided Deep Learning. Many recent studies have
proposed to integrate physics-based modeling approaches
with state-of-the-art deep learning techniques, giving birth
to a field called “Physics-Guided Deep Learning”. One can
introduce additional physics-based penalty in loss function
of neural networks (Shi, Mo, and Di 2021). Some efforts
also lie in combining physics-based models with deep learn-
ing. For example, (Wang et al. 2020) presents a hybrid
framework that combines turbulent flow simulation with
deep learning. (Ji et al. 2020) introduces the physical poten-
tial energy field concept into deep learning to achieve grid-
based urban traffic prediction. However physics-based mod-
els governed by differential equations are usually continu-
ous in time, while deep learning are dominated by discrete
models (Ruthotto and Haber 2019). Recent advances pro-
pose a treatment of neural networks equipped with a contin-
uum of layers (Chen et al. 2018), allowing a more accurate
and natural modeling of physical principles in real world,
e.g., hydropower generation (Zhou et al. 2020) and reservoir
flow (Zhou and Li 2021). To the best of our knowledge, we
are the first to introduce physics-guided deep learning into
road network-based traffic flow prediction.

Conclusion and Future Work

In this paper, we introduced potential energy fields as the
dominant force to drive traffic flows and derived an dif-
ferential equation to describe the physical mechanism of
the traffic potential energy fields. Based on the differen-
tial equations, we proposed a novel Spatio-Temporal Dif-
ferential Equation Network (STDEN), blending deep learn-
ing into physical mechanism modeling, for physics-guided
traffic flow prediction. Extensive experiments on three real-
world traffic datasets demonstrated the effectiveness of the
proposed STDEN. A case study further verified that our
model can capture the mechanism of urban traffic and gen-
erate accurate predictions with physical meaning. However,
we have noticed that the major efficiency bottleneck of our
model is the evolution modeling of potential energy fields.
In the future, we plan to reduce the number of function eval-
uations in ODE solver while preserving the model perfor-
mance, and explore STDEN on more datasets.
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