
Seeing the Unseen: Learning Basis Confounder Representations
for Robust Traffic Prediction

Jiahao Ji∗
Wentao Zhang∗
School of Computer

Science and Engineering,
Beihang University

Beijing, China

Jingyuan Wang†
SCSE, Beihang University

Beijing, China
MIIT Key Laboratory of Data

Intelligence and Management, SEM,
Beihang University

Beijing, China

Chao Huang
Department of Computer Science,
Musketeers Foundation Institute

of Data Science,
University of Hong Kong
Hong Kong SAR, China

Abstract
Traffic prediction is essential for intelligent transportation systems
and urban computing. It aims to establish a relationship between
historical traffic data 𝑋 and future traffic states 𝑌 by employing
various statistical or deep learning methods. However, the relations
of 𝑋 → 𝑌 are often influenced by external confounders that si-
multaneously affect both 𝑋 and 𝑌 , such as weather, accidents, and
holidays. Existing deep-learning traffic prediction models adopt
the classic front-door and back-door adjustments to address the
confounder issue. However, these methods have limitations in ad-
dressing continuous or undefined confounders, as they depend on
predefined discrete values that are often impractical in complex,
real-world scenarios. To overcome this challenge, we propose the
Spatial-Temporal sElf-superVised confoundEr learning (STEVE)
model. This model introduces a basis vector approach, creating
a base confounder bank to represent any confounder as a linear
combination of a group of basis vectors. It also incorporates self-
supervised auxiliary tasks to enhance the expressive power of the
base confounder bank. Afterward, a confounder-irrelevant relation
decoupling module is adopted to separate the confounder effects
from direct 𝑋 → 𝑌 relations. Extensive experiments across four
large-scale datasets validate our model’s superior performance in
handling spatial and temporal distribution shifts and underscore
its adaptability to unseen confounders. Our model implementation
is available at https://github.com/bigscity/STEVE_CODE.

CCS Concepts
• Information systems→ Spatial-temporal systems.

Keywords
Spatial-temporal forecasting; Continuous and undefined confounder;
Urban computing

∗These authors contributed equally to this work.
†Corresponding author: jywang@buaa.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’25, August 3–7, 2025, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1245-6/25/08
https://doi.org/10.1145/3690624.3709201

ACM Reference Format:
Jiahao Ji, Wentao Zhang, Jingyuan Wang, and Chao Huang. 2025. Seeing the
Unseen: Learning Basis Confounder Representations for Robust Traffic Pre-
diction. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining V.1 (KDD ’25), August 3–7, 2025, Toronto, ON, Canada.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3690624.3709201

1 Introduction
Traffic prediction, a key technology in intelligent transportation
systems and urban computing [7, 44], has long been a promi-
nent research area in spatiotemporal data mining [6, 15]. A high-
performance and robust traffic prediction model is crucial for effi-
cient urban traffic management and safe city operations [24]. Typ-
ically, it uses historical traffic states 𝑋 as inputs to predict future
traffic states, denoted as 𝑌 , in upcoming time slots [3, 23, 52]. In
the literature, numerous models have been proposed to capture
the dependency relationship between 𝑋 and 𝑌 , including shallow
statistical methods, such as ARIMA [30], SVR [5], and Kalman fil-
tering [20], as well as deep learning-based methods in recent years.
For instance, using recurrent neural networks [3], temporal convo-
lutional networks [23, 49], and transformers [28] to model temporal
correlations, as well as using convolutional neural networks [51]
and graph neural networks [56] to capture spatial dependencies.

While significant efforts have beenmade in previous works, most
can be classified under the same modeling paradigm from the per-
spective of causal modeling, namely, modeling the directed causal
relation 𝑋 → 𝑌 (see Fig. 1(a)). This paradigm assumes a stable and
direct causal relationship between 𝑋 and 𝑌 , allowing for effective
modeling of this relationship through a data-driven approach. How-
ever, this assumption does not always hold in urban traffic systems.
Spatiotemporal dependencies between𝑋 and𝑌 can be influenced by
various external factors such as rain, traffic accidents, holidays, and
other events. In the causal modeling theory, these external factors
can be expressed as confounders 𝐶 , which simultaneously affect
the states of 𝑋 and 𝑌 , causing shifts in the 𝑋 → 𝑌 relationship
(see Fig. 1(b)). This issue limits the generalization of existing traffic
prediction models under extreme weather or emergency situations,
compromising the resilience of cities. For instance, heavy snow (a
type of confounder) can lead to more cautious driving behavior,
resulting in severe congestion during non-peak hours and altering
the relationship between 𝑋 and 𝑌 . If this changing relationship is
ignored, the model cannot be expected to perform well in traffic
management during snowy days.

ar
X

iv
:2

31
1.

12
47

2v
4

 [
cs

.A
I]

 1
3

Ja
n

20
25

https://orcid.org/0000-0003-3029-2262
https://orcid.org/0009-0009-7285-6872
https://orcid.org/0000-0003-0651-1592
https://orcid.org/0000-0002-2062-1512
https://github.com/bigscity/STEVE_CODE
https://doi.org/10.1145/3690624.3709201
https://doi.org/10.1145/3690624.3709201

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jiahao Ji, Wentao Zhang, Jingyuan Wang, and Chao Huang

: Spurious relation

𝑋: Past traffic states

𝑌: True future states

𝐶: Confounder

: Causal relation

𝑋 𝑌

𝑋 𝑌

𝐶

𝑋 𝑌

𝐶

+

𝑿 ← 𝑪 → 𝒀 Real relation

(a) (b) (c)

Figure 1: Structural causal model for traffic forecasting.

Classic approaches in causal modeling theory to address the
confounder issue include front-door adjustment and back-door
adjustment [35]. The front-door adjustment aims to identify a me-
diator variable that lies on the causal pathway between 𝑋 and 𝑌
and is not influenced by any other confounders 𝐶 . In contrast, the
back-door adjustment controls the confounder 𝐶 to estimate the
causal effect of 𝑋 → 𝑌 under different confounder values. In recent
years, these adjustment approaches have also been incorporated
into deep learning models for traffic forecasting. These methods
explore potential confounders or mediators and use deep learn-
ing to extract their representations to achieve deep learning-based
front-door and back-door adjustments. For example, STNSCM [54]
uses time and location as mediators, learning their representations
to achieve front-door adjustment for deep learning-based bike flow
prediction. CaST [50], on the other hand, learns the representation
of an environment codebook to implement back-door adjustment,
removing the influence of environment confounders. It also repre-
sents spatial context as a mediator of front-door adjustment, thus
eliminating the impact of spatial location confounders.

Although these methods have been effective in addressing the
confounder issue, there remain two significant challenges that need
to be solved in real-world traffic prediction applications. First, exist-
ing methods require traversing all possible values of confounders or
mediators, necessitating that their values must be discrete. However,
in real-world scenarios, many confounders and mediators are with
continuous value. An approximate method is to quantize them as a
discrete value [35]. However, setting the correct quantization step
size is very difficult. Too small a quantization step results in insuffi-
cient data for each condition, while too large a quantization step
fails to fully eliminate the effects of confounders. Second, existing
methods require confounders or mediators to be predefined. How-
ever, traffic prediction is a complex open scenario that is influenced
by many unknown factors that cannot be predefined [46], such as
periodicity and rhythm in time, spatial location and land function,
and even some uncertainties, such as major events, weather and etc.
Therefore, it is very difficult to represent all possible confounders
using an explicit way.

To overcome the above challenges, we propose a Spatial-Temporal
sElf-superVised confoundEr learning (STEVE) model that adopts
a self-supervised method to learn representations of implicit con-
founders in traffic forecasting. Our model employs a basis vector
approach to address the challenge of traversing all possible con-
founders in back-door adjustment. Specifically, we use neural net-
works to learn a set of basis vectors for confounders, termed the
base confounder bank, rather than targeting specific confounders.
Using the base confounder bank, we can represent any confounder,
whether continuous or discrete, predefined or not, as a linear com-
bination of these basis vectors. The combination weights are adap-
tively produced by performing cross-attention between the input
sample and the base confounder bank. Next, to ensure that the
base confounder bank has adequate expressive capacity to handle
various types of confounders, we propose three self-supervised

auxiliary tasks for its training. The tasks include spatial location
classification, temporal index identification, and traffic load predic-
tion for incorporating spatial, temporal, and semantic information
about confounders, respectively. Finally, we adopt a confounder-
irrelevant relation decoupling module to separate the confounder
effects from the direct 𝑋 → 𝑌 relations. It includes an adversarial
disentanglement component for semantic separation and mutual
information minimization loss for distribution separation. The con-
founder representations from the base confounder bank and the
𝑋 → 𝑌 relation representations are then transformed into corre-
sponding traffic state predictions, followed by a fusion module that
combines these predictions to generate the final results.

Extensive experiments on four large-scale traffic datasets demon-
strate the superiority of our STEVE in scenarios with data distribu-
tion shifts due to spatial and temporal confounders. A further study
on the weather confounder highlights our model’s adaptability and
generalizability to unseen confounders. To our knowledge, this is
the first work to extend the principle of back-door adjustment to
handle continuous or unknown confounders in deep-learning-based
traffic prediction.

2 Notation and Problem Definition
2.1 Notation
We use a traffic graph to model the dynamic states of urban traffic.

Definition 1 (Traffic Graph). Given a set of traffic entities (e.g.,
spatial regions, road segments), denoted asV = {𝑣𝑛 |1 ≤ 𝑛 ≤ 𝑁 }, we
define a traffic graph as G = (V,𝑨). Here, 𝑨 ∈ R𝑁×𝑁 is a binary
adjacent matrix for the graph, where 𝑎𝑚,𝑛 = 1 when there is an edge
from the node 𝑣𝑚 to 𝑣𝑛 .

Over the traffic graph, we define dynamic traffic states.

Definition 2 (Traffic State). Given a traffic entity 𝑣𝑛 , assum-
ing it has 𝐹 traffic state features, such as average speed, traffic inflow,
and traffic outflow, we denote the traffic states of 𝑣𝑛 at the 𝑡-th time
slice as 𝒙𝑛,𝑡 ∈ R𝐹 . The traffic states for all the 𝑁 entities are de-
noted as a matrix of 𝑿𝑡 ∈ R𝑁×𝐹 . The historical traffic states during
𝑡 − 𝑇 + 1 to 𝑡 are expressed as X𝑡 = (𝑿𝑡−𝑇+1, . . . ,𝑿𝑡) ∈ R𝑇×𝑁×𝐹 ,
and 𝒀𝑡+1 = 𝑿𝑡+1 denotes the future traffic states.

2.2 Problem Definition
Given past spatiotemporal (ST) traffic states X𝑡 and future states
𝒀𝑡+1, the classic traffic prediction problem is to find a function of

𝒀̂𝑡+1 = 𝑓 (X𝑡 ;𝚯) , (1)

where 𝑓 (·) is the forecasting function, 𝒀̂𝑡+1 is the prediction for
𝒀𝑡+1 and 𝚯 is the parameters to learn.

To reveal the underlying mechanism of traffic data dynamics,
we adopt the Structural Causal Model (SCM) [35] to describe the
relations between the elements in the traffic prediction problem.
We denote the history traffic states as 𝑋 and the future traffic states
to be predicted as 𝑌 . There are two types of effects that can cause
correlations between 𝑋 and 𝑌 (as illustrated in Fig. 1):
(1) The direct casual affection from 𝑋 to 𝑌 , denoted as 𝑋 → 𝑌 .
(2) A confounder𝐶 which can effect both𝑋 and 𝑌 at the same time,

i.e., 𝑋 ← 𝐶 → 𝑌 .

Seeing the Unseen: Learning Basis Confounder Representations for Robust Traffic Prediction KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Traffic State 𝓧

Traffic Sequence
Repr Learner

Confouder
Extractor +

𝓩

𝑪

TCL

Confounder-
related Predictor

Confounder-
irrelevant Predictor

TCL
𝓗 𝑯 𝓛𝑃

෡𝒀

෡𝒀(𝒄)

෡𝒀(𝒊)

Ground
Truth 𝒀

Output

Traffic Sequence
Repr Learner

TCL GCL TCL

Block 1 Block 2

𝓛𝑀
COSSL

Adversarial

𝓛𝐶

𝓛𝐼

Mutual Info
Minimization +

20240731

Figure 2: The pipeline of our STEVE model. Repr: Repre-
sentation. TCL: Temporal Convolutional Layer. GCL: Graph
Convolutional Layer. Info: Information. COSSL: Confounder-
Oriented Self-Supervised Learning.We omit the sample index
of all variables for simplicity. Fig. 3 illustrates the details of
the confounder extractor.

However, most existing works only model the first relation that
is irrelevant to confounders, which can be denoted as Pr(𝑖) (𝑌 |𝑋).
This is due to the problem definition in Eq. (1) does not explicitly
describe the influence of the confounder𝐶 . Such a definition induces
researchers to ignore the effect of confounders in model design and
limits the generalizability of the learned model. If we consider such
effects, the corresponding conditional probability Pr(𝑐) (𝑌 |𝑋) can
be expressed as

Pr(𝑐) (𝑌 |𝑋) = Pr(𝑌 |𝑋,𝐶)Pr(𝐶 |𝑋) . (2)

Then, the traffic prediction problem relevant to confounders is
divided into two steps. In the first step, we approximate Pr(𝐶 |𝑋)
via a learningmodel that aims to extract confounder representations
from historical traffic state data:

𝑪𝑡 = 𝑔
(𝑐) (X𝑡), (3)

where 𝑔 (𝑐) (·) is the confounder representations extracting function.
The second step employs the confounder representations and input
data to predict future traffic states:

𝒀̂ (𝑐)
𝑡+1 = 𝑓 (𝑐)

(
X𝑡 ,𝑪𝑡 ,𝚯

(𝑐)
)
, (4)

where 𝑓 (𝑐) (·) is the confounder-related forecasting function and
𝚯
(𝑐) is its parameters.
By combining relations Pr(𝑐) (𝑌 |𝑋) and Pr(𝑖) (𝑌 |𝑋), we can de-

rive the overall probability relation as Pr(𝑌 |𝑋) = Pr(𝑐) (𝑌 |𝑋) +
Pr(𝑖) (𝑌 |𝑋). Therefore, the ST traffic prediction problem should be
reformulated as

𝒀̂𝑡+1 = 𝑓
(𝑐)

(
X𝑡 ,𝑪𝑡 ;𝚯(𝑐)

)
+ 𝑓 (𝑖)

(
X𝑡 ;𝚯(𝑖)

)
, (5)

where 𝑓 (𝑖) (·) is the confounder-irrelevant forecasting functionwith
learnable parameters 𝚯(𝑖) .

3 Model
We implement Eq. (5) by proposing STEVE depicted in Fig. 2. Our
model takes historical ST traffic observations as input to predict
future traffic states, with the aid of self-supervised signals to facil-
itate confounder representation extraction. We will elaborate on
the pipeline and each core component in the following parts.

3.1 Confounder Representation Generation
The goal of this component is to generate the confounder repre-
sentations through the input traffic data. To achieve this, we first
utilize a Traffic Sequence Representation Learner module to embed

dynamic temporal dependencies and variant spatial relations into a
hidden representation. Then, we introduce a learnable Confounder
Extractor to extract complex dynamic confounder representations
from the hidden representation adaptively. Lastly, the confounder
representations will be refined to represent the desired confounders
by Confounder-Oriented Self-Supervised Learning in Section 3.2.

3.1.1 Traffic Sequence Representation Learner. The TSRL module
aims to transform the input traffic sequence X𝑡 ∈ R𝑇×𝑁×𝐹 into a
hidden representation Z𝑡 ∈ R𝑇×𝑁×𝐷 . Temporal and graph convo-
lutional layers are employed in TSRL to model temporal patterns
and spatial dependencies between different locations.

Temporal Convolutional Layer (TCL).We take traffic state se-
quence X𝑡 = (𝑿𝑡−𝑇+1, . . . ,𝑿𝑡) ∈ R𝑇×𝑁×𝐹 as the input of the
TCL. We employ 1D convolution [49] along the time dimension to
implement the TCL, which outputs time-aware traffic embeddings:

(𝑬𝑡−𝑇1+1, . . . , 𝑬𝑡) = TCL(𝑿𝑡−𝑇+1, . . . ,𝑿𝑡), (6)

where 𝑬𝑡 ∈ R𝑁×𝐷 is the traffic embedding matrix at time step 𝑡 ,
and 𝑇1 is the length of the output sequence. Here, 𝑁 is the node
number of our input network, and 𝐷 is the embedding dimension.

Graph Convolutional Layer (GCL).We take the output of TCL as
input. Our GCL is implemented by a graph-based message-passing
network [23]:

𝑺𝑡 = GCL(𝑬𝑡 ,𝑨), (7)

where 𝑨 is the adjacency matrix of the corresponding network. By
applying GCL to each time-aware representation 𝑬𝑡 , we obtain the
refined traffic representations (𝑺𝑡−𝑇1+1, . . . , 𝑺𝑡).

To jointly model temporal and spatial dependencies, we draw
inspiration from [52] and construct TSRL by two blocks, each of
which shows like: TCL → GCL → TCL, as in Fig. 2. The final
output of TSRL is Z𝑡 ∈ R𝑇×𝑁×𝐷 :

Z𝑡 = (𝒁𝑡−𝑇+1, . . . ,𝒁𝑡) = TSRL(X𝑡 ,𝑨) . (8)

We use Z𝑡 for the confounder representation extraction in the next
part. Similarly, we also employ another TSRL model with different
parameters to generate representation H𝑡 ∈ R𝑇×𝑁×𝐷 , which is
used for confounder-irrelevant relation modeling in Section 3.3.

3.1.2 Confounder Extractor. This section aims to implement func-
tion 𝑔 (𝑐) (·) in Eq. (3) that extracts confounder representations from
historical traffic state data.

Motivation and Idea. The function 𝑔 (𝑐) (·) is used for approxi-
mating Pr(𝐶 |𝑋) in Eq. (2), where 𝐶 and 𝑋 are random variables of
confounder and historical traffic data. However, directly approxi-
mating Pr(𝐶 |𝑋) is a non-trivial task that involves two main obsta-
cles: (1) 𝐶 has a complex distribution mixing different conditions;
(2) 𝐶 could take on an infinite number of values. To address these
challenges, we draw inspiration from [37] and introduce a series of
base variables to represent it:

Pr(𝐶 |𝑋) =
𝐾∑︁
𝑘=1

𝛼 (𝑘)𝜙
(
𝛽 (𝑘) |𝑋

)
, (9)

where 𝐾 is the number of base variables, 𝛼𝑘 is the membership
degree that 𝐶 belongs to the 𝑘-th variable, and ∑𝐾

𝑘=1 𝛼
(𝑘) = 1.

𝜙 (𝛽 (𝑘) |𝑋) denotes the probability function of the 𝑘-th base variable
given 𝑋 . We can treat 𝜙 (𝛽 (1) |𝑋), . . . , 𝜙 (𝛽 (𝐾) |𝑋) as different base

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jiahao Ji, Wentao Zhang, Jingyuan Wang, and Chao Huang#1 Spatail Location Classification

Node
Representation

Spatial
Location Label

Node ID
2

5

87

6

4
3

1

#2 Time Index Identification

Graph
Representation Temporal Index Label

0:00

46
45

44

0

47

1
2

H
o

lid
ays

W
o

rkd
ays

3:00

0:00

22:00

20:00

21:00

2:00
1:00

23:00

#3 Traffic Load Prediction

Node Representation Traffic Load Label

2

0

1

3

4

%

%

%

%

%

5

𝓩 …

𝒃(𝟏)

𝒃(𝟐)

𝒃(𝑲)

Base confounder bank

𝑸

෩𝑩 𝑩

m
o

m
en

tu
m

MLP

Time Avg Pool

Att
Unit

Att
Unit

Att
Unit

…

𝒒𝒏

𝜶𝒏
(𝟏)

𝜶𝒏
(𝟐)

𝜶𝒏
(𝑲)

Su
m

 P
o

o
l

𝒄𝒏

𝒄𝟏

…

𝒄𝑵

…

𝑪

row 1

row n

row N

Product

Momentum update

Representation

20240721

Figure 3: The architecture of our confounder extractor. Avg:
Average. Att: Attention. For simplicity, the sample index 𝑡
for Z and 𝑪 is omitted.

conditions that form complex confounder with learnable weights
𝜶 = (𝛼 (1) , . . . , 𝛼 (𝐾)) . Moreover, since the change in weights is con-
tinuous, we can theoretically express an infinite number of con-
founders. For example, suppose we have base conditions such as
rush hours, rainfall, holidays, etc, by assigning different weights
to them, we can express any complex confounders such as “rush
hours on a rainy workday”, etc.

Method. On top of this idea, as shown in Fig. 3, we implement
an adaptive base confounder bank 𝑩 = (𝒃 (1) , . . . ,𝒃 (𝐾))⊤ ∈ R𝐾×𝐷
with embedding dimension 𝐷 . Here, 𝒃 (𝑘) is an implementation of
𝜙 (𝛽 (𝑘) |𝑋) . Specifically, after acquiring representation (Z1, . . . ,Z𝑡)
in chronological order, we transform them into (𝑩̃1, . . . , 𝑩̃𝑡) by

𝑩̃𝑡 = MLP(Flatten2 (Z𝑡)) . (10)

Flatten2 (·) denotes the operation that flattens the first two dimen-
sions of the input tensor Z𝑡 ∈ R𝑇×𝑁×𝐷 . MLP(·) is employed in
the first dimension of input data to generate 𝑩̃𝑡 with shape 𝐾 × 𝐷 .

Then, we use 𝑩̃ to update 𝑩. A direct approach is real-time up-
dating, i.e., 𝑩𝑡 = 𝑩̃𝑡 , which preserves sufficient environmental
information of the current traffic data sample but loses that of
previous samples. This is inconsistent with our expectation that
𝑩𝑡 should encompass more environmental information when per-
ceiving the current environment. To tackle this issue, we adopt a
momentum update mechanism as follows:

𝑩𝑡 = 𝛾𝑩𝑡−1 + (1 − 𝛾)𝑩̃𝑡 , (11)

where 𝛾 is the momentum coefficient to determine the amount of
information being kept in every update. Besides, we randomly ini-
tialized the confounder bank and utilized whitening with principal
components analysis [1] to decorrelate the base confounder vectors.

Based on the confounder bank, we can generate the weight 𝛼 (𝑘)
in Eq. (9) via a cross attention mechanism[41]. Concretely, for the
𝑛-th traffic entity 𝑣𝑛 , we produce a confounder query 𝒒𝑛,𝑡 ∈ R𝐷 by

𝒒𝑛,𝑡 =
1
𝑇

𝑡∑︁
𝜏=𝑡−𝑇+1

𝒛𝑛,𝜏 , (12)

where 𝒛𝑛,𝜏 is the hidden representation of 𝑣𝑛 at time slot 𝜏 . We then
utilize the query 𝒒𝑛,𝑡 and the 𝑘-th vector in confounder bank 𝒃 (𝑘)𝑡

to compute 𝛼 (𝑘)𝑛,𝑡 by:

𝛼
(𝑘)
𝑛,𝑡 =

exp
(
𝑢
(
𝒒𝑛,𝑡 ,𝒃

(𝑘)
𝑡

))
∑𝐾
𝑗=1 exp

(
𝑢
(
𝒒𝑛,𝑡 ,𝒃

(𝑗)
𝑡

)) , (13)

where 𝑢 : R𝐷 × R𝐷 → R is a function that computes attention
weights, and we implement it by an MLP. Lastly, we derive the

relevant confounder embedding as

𝒄𝑛,𝑡 =
𝐾∑︁
𝑘=1

𝛼
(𝑘)
𝑛,𝑡 𝒃

(𝑘)
𝑡 . (14)

𝒄𝑛,𝑡 is the 𝑛-th row of 𝑪𝑡 ∈ R𝑁×𝐷 , which is the confounder rep-
resentation for input sample X𝑡 with hidden representation Z𝑡 .
When the (𝑡 + 1)-th sample X𝑡+1 comes, we can similarly feed its
Z𝑡+1 into Eq. (10) and repeat the procedure until Eq. (14).

Remark: After the training phase, our base confounder bank 𝑩
defines a vector space, where each confounder can be regarded as
a point (in this space) that possesses a unique coordinate defined
by weights (𝛼 (1) , . . . , 𝛼 (𝐾)). The existence of an infinite number
of points in space indicates that our base confounder bank can
represent any possible confounder in the learned space, whether
continuous or discrete, predefined or not. Furthermore, when test-
ing, a new traffic sample can slightly shape the confounder space
according to its hidden environment. This enhances the ability of
our method to generalize to new unseen confounders.

3.2 Confounder-Oriented SSL
The Confounder-Oriented Self-Supervised Learning (COSSL) com-
ponent aims to refine representation 𝑪 by using self-supervised
signals relevant to confounders. Since it is hard to enumerate all
confounders explicitly, we propose to use some representative ones
as self-supervised signals to inject confounder information into 𝑪1.

Specifically, we categorize potential factors that affect traffic
states into three classes from conceptually different perspectives,
i.e., temporal, spatial, and semantic, based on the unique properties
of ST traffic data. We then carefully select representative and easily
collected confounders from each class, including temporal index,
spatial location, and traffic capacity. These selected factors will
serve as self-supervised signals in the following three tasks.

Task #1: Spatial Location Classification. The spatial location
of a traffic entity reflects its surroundings, which may appear as a
confounder and vary by location, altering the dependency of past
and future data (e.g., (𝒙𝑡−𝑇+1, . . . , 𝒙𝑡) → 𝒙𝑡+1). For example, such
dependency in a transportation hub can significantly differ from
that in a working area. Therefore, we propose a spatial location clas-
sification task to perceive the surroundings of each region. Firstly,
for traffic entity 𝑣𝑛 ∈ V , we utilize the node ID to assign it a unique
one-hot location label, 𝒚 (1)𝑛 ∈ {0, 1}𝑁 , where its item 𝑦

(1)
𝑛,𝑚 = 1 if

𝑚 = 𝑛 else 0. We optimize the task by a cross-entropy loss as

ℓ𝑠𝑙 (𝑪) =
1
𝑁

𝑁∑︁
𝑛=1

ℓ
(𝑛)
𝑠𝑙

=
1
𝑁

𝑁∑︁
𝑛=1

𝑁∑︁
𝑚=1

𝑦
(1)
𝑛,𝑚 log

(
𝑦̂
(1)
𝑛,𝑚

)
, (15)

where 𝑦𝑛,𝑚 is the predicted probability of the 𝑛-th entity belonging
to category𝑚, and it is the𝑚-th item of vector 𝒚̂ (1)𝑛 = 𝑔1 (𝒄𝑛) ∈ R𝑁 .
𝑔1 (·) is a two-layer MLP followed by a softmax activation, while
𝒄𝑛 is the 𝑛-th row of confounder representation 𝑪 .

Task #2: Temporal Index Identification. Time-varying con-
founders like weather and holidays can shape the traffic data dis-
tribution. For instance, holidays flatten the curves of morning and
evening rush hours, resulting in a very different distribution from
the workday rush hours. To utilize such information, we propose a

1For simplicity, we omit the sample index 𝑡 of 𝑪𝑡 .

Seeing the Unseen: Learning Basis Confounder Representations for Robust Traffic Prediction KDD ’25, August 3–7, 2025, Toronto, ON, Canada

temporal index identification task. Specifically, we divide the day
into 24 time slots, each of which is a category. We use different
categories to distinguish between workdays and holidays, so there
is a total of 𝐼𝑡 = 48 temporal indexes. For a given traffic state sample
(X, 𝒀), we use the temporal index of 𝒀 as ground truth. It is denoted
by a one-hot vector 𝒚 (2) ∈ {0, 1}𝐼𝑡 . The optimization objective of
the temporal index identification task is

ℓ𝑡𝑖 (𝑪) =
𝐼𝑡∑︁
𝑖=1

𝑦
(2)
𝑖

log
(
𝜎 (𝒚̂ (2))𝑖

)
, (16)

where 𝜎 is the SoftMax activation. 𝒚̂ (2) = 1
𝑁

∑𝑁
𝑛=1 𝑔2 (𝒄𝑛) is the

predicted temporal index vector, where 𝑔2 is a two-layer MLP used
for enhancing the confounder representation 𝒄𝑛 .

Task #3: Traffic Load Prediction. The traffic load is a kind
of semantic information describing the congestion level of traffic
entities. It acts as a confounder and has an impact on the change of
future traffic. For example, when the load reaches saturation, the
traffic is more likely to be congested, causing traffic speeds and
inflow/outflow to drop in subsequent time slots. Therefore, we pro-
pose a traffic load prediction task to inject dynamic load information
into confounder representations. Specifically, we approximate the
load capacity of the 𝑛-th node by using the historical maximum traf-
fic flow, i.e.,𝐶𝑃𝑛 = max({𝒙𝑡,𝑛 }𝜏1) ∈ R

𝐹 . 𝜏 denotes the number of time
slots in the training set. max(·) extracts the maximum value of each
feature. Then, we divide flow volume into 6 load levels and calculate
the traffic load of the 𝑛-th node via 𝒚 (3)𝑛 = ⌈5𝒚𝑛/𝐶𝑃𝑛 ⌉ ∈ {0, . . . , 5}𝐹 ,
where 𝒚𝑛 is the label data in the main traffic prediction problem.
Since load states are quite imbalanced in practice, we adopt the
Mean Square Error (MSE) to optimize this task:

ℓ𝑡𝑙 (𝑪) =
1
𝑁

𝑁∑︁
𝑛=1

𝑔3 (𝒄𝑛) − 𝒚 (3)𝑛

2
2
, (17)

where 𝑔3 (·) is the load prediction head implemented by a two-layer
MLP, and 𝒄𝑛 is the confounder representation. It is worth noting
that though quantized as a discrete value, traffic load has a relative
size relationship. Regression loss like MSE is more suitable than
classification loss since MSE can perceive size differences.

Lastly, we jointly minimize all three self-supervised loss func-
tions to train representation 𝑪 , making it fuse information of vari-
ous confounders. The target loss of confounder-orient self-supervised
learning is defined as

L𝐶 =
∑︁

𝑢∈{𝑠𝑙,𝑡𝑖,𝑡𝑙 }
ℓ𝑢 (𝑪) . (18)

Remark: The selected representative factors that serve as self-
supervised signals can instruct our model to effectively identify
more information about latent confounders. By training auxiliary
tasks that capitalize on these signals, we enhance our model to learn
robust representations capable of previously unseen confounders.

3.3 Confounder-Irrelevant Relation Decoupling
As introduced in Eq. (5), in addition to capturing the confounder-
related dynamic relationships, modeling confounder-irrelevant rela-
tionships is also crucial for spatiotemporal traffic prediction. Since

Generator 𝑔𝜃 Discriminator 𝑔𝜓
GRL

𝓧
𝑯 𝑯

𝓛𝑰

𝜕𝓛𝑰
𝜕𝜓

−𝜂
𝜕𝓛𝑰
𝜕𝜃

Figure 4: Adversarial learning is achieved by inserting a GRL
between the generator 𝑔𝜃 and the discriminator 𝑔𝜓 . The for-
ward pass is indicated by arrows while the backward pass is
indicated by dashed arrows.

confounder-irrelevant relations should involve minimal informa-
tion about the confounder, we propose to disentangle confounder-
irrelevant representations and confounder representations from
the semantics and distribution perspectives.

Recalling the hidden representation H𝑡 ∈ R𝑇×𝑁×𝐷 produced
for confounder-irrelevant relation modeling in Section 3.1.1, it is
then transformed into 𝑯𝑡 ∈ R𝑁×𝐷 by applying the TCL defined
in Eq. (6) along the temporal dimension 𝑇 . Next, we elaborate on
how to refine 𝑯 into a confounder-irrelevant representation distin-
guished from the confounder representation 𝑪 . Note we omit the
sample index 𝑡 of 𝑯𝑡 and 𝑪𝑡 for convenience.

3.3.1 Adversarial Disentanglement. To push all confounder infor-
mation away from 𝑯 , we introduce an adversarial learning-based
disentanglement module as shown in Fig. 4. Concretely, the genera-
tor 𝑔𝜃 , consisting of a TSRL and a TCL, aims to produce 𝑯 . It is then
fed into the discriminator𝑔𝜓 for confounder-related self-supervised
tasks in Section 3.2. Different from the learning pipeline of 𝑪 , we
insert a Gradient Reversal Layer (GRL) [19] between the generator
and discriminator in the pipeline of 𝑯 to disentangle 𝑯 and 𝑪 .

The forward pass of GRL directly outputs the input without any
transform: 𝑯 = GRL𝜂 (𝑯). However, during the backward pass, it
multiples the incoming gradient back from the discriminator by a
negative factor −𝜂:

𝜕 GRL𝜂
𝜕 𝑯

= −𝜂𝑰 , (19)

where 𝑰 is the identity matrix. The operation reverses the gradient
direction passed back to the generator, pushing it away from the
optimization direction of the confounder discriminator. This results
in𝑯 to be confounder-irrelevant, i.e., the semantics of𝑯 in different
confounder environments are as similar as possible.

Mathematically, we can define the loss function that is being
minimized as

L𝐼 (𝜓,𝜃) =
∑︁
𝑢∈U

ℓ𝑢 (GRL𝜂 (𝑯)) =
∑︁
𝑢∈U

ℓ𝑢 (GRL𝜂 (𝑔𝜃 (X))), (20)

where U = {𝑠𝑙, 𝑡𝑖, 𝑡𝑙} is the task set of the self-supervised dis-
criminator defined in Section 3.2, and 𝜓 is its parameters. Under
the aforementioned loss function, the adversarial disentanglement
module is actually trained with the following procedure:

𝜓 = argmin
𝜓

L𝐼 (𝜓,𝜃), 𝜃 = argmax
𝜃

L𝐼 (𝜓,𝜃) . (21)

That is,𝜓 is optimized to minimize L𝐼 , and 𝜃 is optimized to maxi-
mize L𝐼 . With one single loss function, we achieve an adversarial
relationship where two parts of the same network have different
optimization objectives. That’s why we call it “adversarial”.

3.3.2 Mutual Information Minimization. Generally, there is an in-
dependent constraint in the definition of disentangled represen-
tation [4]. To achieve this, we propose to minimize the Mutual

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jiahao Ji, Wentao Zhang, Jingyuan Wang, and Chao Huang

Information (MI) between 𝑯 and 𝑪 , making the representation
distributions more disentangled:

L𝑀 = MI(𝑯 ,𝑪) = EPr(𝑯 ,𝑪)
[
log

Pr(𝑯 ,𝑪)
Pr(𝑯)Pr(𝑪)

]
, (22)

where Pr(𝑯), Pr(𝑪), and Pr(𝑯 , 𝑪) correspond to the marginal and
joint distributions of 𝑯 and 𝑪 .

Due to the unknown closed-form expressions of the marginal
and joint distributions, direct computation of the MI in Eq. (22) is
not feasible. Therefore, we adopt an approximation method as an
alternative. Specifically, we use the CLUB method [10] to calculate
the upper bound on MI of 𝑯 and 𝑪 as

M̂Iub (𝑯 ,𝑪) =
1
𝑀

𝑀∑︁
𝑖=1

[
log𝑞𝜃 (𝑯𝑖 |𝑪𝑖) −

1
𝑀

𝑀∑︁
𝑗=1

log𝑞𝜃
(
𝑯 𝑗 |𝑪𝑖

)]
, (23)

where𝑀 is the sample size, and 𝑯𝑖 , 𝑪𝑖 denote representations pro-
duced by the 𝑖-th data sample. The 𝑞𝜃 (𝑯 |𝑪) in Eq. (23) is a vari-
ational estimation of the conditional probability Pr(𝑯 |𝑪) , which
follows a Gaussian distribution as N(𝜇𝑪 |𝜎2

𝑪) . Here the mean 𝜇𝑪
and variance 𝜎2𝑪 are estimated using an MLP network:

{𝜇𝑪 , 𝜎2
𝑪 } = MLP(𝑪,𝚯mlp), (24)

where 𝚯mlp refers the learnable parameters.
Finally, we use M̂Iub (𝑯 , 𝑪) in Eq. (23) to replace MI(𝑯 , 𝑪) in

Eq. (22) to implement the mutual information minimization loss.
This ensures that 𝑯 and 𝑪 adhere closely to the independent con-
straint in disentangled representation, which is empirically verified
in Section 4.3.4.

3.4 Model Training
In this section, we first make confounder-related and confounder-
irrelevant predictions to compute the loss of the main traffic predic-
tion task, and then combine it with other losses for model training.

Prediction and Fusion. On the one hand, having 𝑪𝑡 and Z𝑡 , we
can implement the confounder-aware forecasting function 𝑓𝑐 (·) in
Eq. (5) to make confounder-aware traffic predictions via

𝒀̂ (𝑐)
𝑡+1 = MLP(𝑪𝑡 + TCL(Z𝒕)) . (25)

TCL, defined in Eq. (6), is responsible for absorbing the time dimen-
sion of Z𝑡 . MLP is implemented by a two-layer fully connected net-
work. On the other hand, based on the confounder-irrelevant repre-
sentation for the 𝑡-th sample,𝑯𝑡 , we can implement the confounder-
irrelevant forecasting function 𝑓𝑖 (·) in Eq. (5) by

𝒀̂ (𝑖)
𝑡+1 = MLP(𝑯𝑡) . (26)

In real scenarios, confounder factors affect regions to different
degrees. Taking the rush hours factor as an example, it mainly
affects the traffic states in office and residential areas, but exhibits
less influence in parks and entertainment areas. Moreover, despite
being in the same area, the influence on different state channels
(e.g., inflow, outflow) is also distinct. Inspired by these phenomena,
we propose a heterogeneity-aware fusion method as follows:

𝒀̂𝑡+1 = 𝚲1 ⊙ 𝒀̂ (𝑐)
𝑡+1 + 𝒀̂

(𝑖)
𝑡+1, (27)

where 𝒀̂𝑡+1 is the final traffic prediction. ⊙ is the element-wise
Hadamard product. 𝚲1 = Sigmoid(𝑪𝑡𝑾𝑐) adjusts the confounder-
related effect, where𝑾𝑐 ∈ R𝐷×𝐹 are learnable parameters.

Training Objective. Based on the final prediction 𝒀̂𝑡+1, we can
compute the main loss of the traffic prediction task by

L𝑃 =
1
𝑁𝐹

𝑁∑︁
𝑖=1

𝐹∑︁
𝑗=1

��𝑦𝑖,𝑗 − 𝑦̂𝑖,𝑗 �� , (28)

where 𝑦𝑖, 𝑗 is the element of 𝒀̂𝑡+1 ∈ R𝑁×𝐹 , and 𝑦𝑖, 𝑗 denotes the
ground truth.𝑁 is the number of traffic entities, and 𝐹 is the number
of traffic states being predicted. Finally, we obtain the overall loss by
incorporating L𝐶 , L𝑀 , L𝐼 , and L𝑃 into a joint learning objective:

L𝑂 = L𝑃 + 𝛾1L𝐶 + 𝛾2L𝑀 + 𝛾3L𝐼 , (29)

where 𝛾1, 𝛾2, 𝛾3 are the hyper-parameters to balance the learning
of multiple tasks.

4 Experiment
4.1 Experimental Setting
4.1.1 Dataset and Baseline. To evaluate our proposed method, we
conduct experiments on four real-world traffic datasets including
NYCTaxi, NYCBike1, NYCBike2, and BJTaxi [23], which record the
bike rental demands and taxi orders, respectively. We divide all
datasets into training, validation, and test sets in a ratio of 7:1:2.

We choose Mean Absolute Error (MAE) and Mean Absolute
Percentage Error (MAPE) as evaluation metrics, which are widely
used in ST traffic prediction [3, 13, 52]. A lower metric value in-
dicates a better performance. We selected 13 methods as base-
lines and categorized them into distinct groups: 𝑖) Spatiotemporal
prediction methods based on GNNs: STGCN[52], GMAN[55], AST-
GNN[21], and HimNet[16]; 𝑖𝑖) Disentanglement-based spatiotem-
poral methods: COST[48], ST-Norm[12], STWA[18], and SCNN[11];
𝑖𝑖𝑖) Models considering distribution shift: AdaRNN[17], CIGA[9],
STNSCM[13], CauSTG[56], and CaST[50]. The final model parame-
ters are chosen by the optimal effect of the validation set. Detailed
descriptions of datasets and baselines are in Appendix A.1.

4.1.2 Implementation Protocols. Our STEVE is implemented with
PyTorch 1.10.2 on anUbuntu serverwith anNVIDIARTX 3090. Both
temporal and spatial convolution kernel sizes in TSRL are set to 3.
The hidden dimension 𝐷 is searched over {16, 32, 64, 128}. For the
base confounder number 𝐾 , we search it from {16, 32, 64, 128, 256}.
For the momentum coefficient 𝛾 in the confounder extractor, we
test it from 0.1 to 0.9. Our model is trained using Adam optimizer
with a learning rate of 0.001 and a batch size of 32. Task balancing
coefficients 𝛾1, 𝛾2, 𝛾3 are trained via a dynamic weight-averaging
strategy [32] with initial values 1.0. Detailed model setting and
parameter sensitivity are in Appendix A.1 and A.2.4. Since hidden
confounder data are unavailable, we assess the model’s robustness
on distribution shift via simulated environments. Specifically, we
consider two scenarios that are common in the real world: (1) Tem-
poral Distribution Shift (TDS): we split the temporal distribution
into workdays and holidays, which is roughly 5:2 in the training set.
It is then shifted to 1:0 and 0:1 to imitate TDS to the maximum ex-
tent. (2) Spatial Distribution Shift (SDS): To simulate real-world
semantics of traffic entities, we cluster them into different groups
via 𝑘-means algorithm. {𝑐0, . . . , 𝑐𝑘 } denote the clustering results,
where entities with smaller id are usually located in less popular
areas and thus have lower traffic. There is a mixed distribution

Seeing the Unseen: Learning Basis Confounder Representations for Robust Traffic Prediction KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Table 1: Performance comparison of average on 5-run results. The bold/underlined font means the best/the second-best result.
Work: Workday. Holi: Holiday. 𝑐𝑖 : Spatial entity cluster with id 𝑖. Avg: Average results of different tasks.

Model
Dataset NYCTaxi NYCBike1 NYCBike2 BJTaxi

Task TDS SDS TDS SDS TDS SDS TDS SDS
Work Holi Avg 𝑐0 𝑐1 𝑐2 𝑐3 Avg Work Holi Avg 𝑐0 𝑐1 𝑐2 𝑐3 Avg Avg Avg Avg Avg

STGCN
MAE 11.38 11.32 11.35 3.97 8.31 17.17 27.56 14.25 5.50 5.16 5.33 2.96 4.36 5.81 7.53 5.16 5.48 5.30 12.14 15.80
MAPE 18.90 18.69 18.80 27.68 16.80 11.42 9.74 16.41 25.28 29.98 27.63 33.86 28.50 24.56 22.28 27.30 27.90 28.04 17.13 14.31

AGCRN MAE 10.87 10.91 10.89 3.77 8.17 17.12 27.68 14.19 5.44 5.06 5.25 2.93 4.35 5.87 7.56 5.18 5.39 5.18 11.55 18.15
MAPE 18.28 17.99 18.14 26.14 16.76 11.34 9.65 15.97 25.19 29.71 27.45 33.46 28.88 25.41 22.61 27.59 27.39 27.51 16.83 15.55

ASTGNN MAE 10.99 11.28 11.13 4.35 8.50 17.64 27.87 14.59 5.69 5.31 5.50 3.40 4.72 6.38 8.21 5.68 5.43 5.29 11.56 15.07
MAPE 19.45 24.27 21.86 33.39 17.44 11.48 9.63 17.98 25.34 28.82 27.08 34.18 28.55 25.19 22.93 27.71 31.70 29.18 17.54 14.08

HimNet MAE 13.42 13.16 13.29 4.36 9.59 20.25 33.64 16.96 5.98 5.48 5.73 3.18 4.63 6.15 8.07 5.51 5.49 5.27 12.04 16.08
MAPE 20.78 20.23 20.50 29.18 18.80 13.16 10.98 18.03 26.28 29.97 28.13 31.98 28.84 26.00 23.88 27.68 27.96 27.66 16.72 14.11

COST MAE 13.14 13.02 13.08 4.70 15.10 38.92 67.02 31.44 6.64 6.34 6.49 3.13 4.98 7.28 9.24 6.16 7.28 6.72 13.96 18.68
MAPE 32.80 30.37 31.59 31.11 33.55 34.19 33.07 32.98 29.67 37.62 33.65 31.43 32.16 33.65 29.67 31.73 35.28 34.05 19.76 17.15

ST-Norm MAE 16.57 17.13 16.85 6.01 13.09 23.92 39.05 20.51 5.46 5.48 5.47 3.40 4.42 5.76 7.98 5.39 5.48 5.17 13.31 17.05
MAPE 31.47 30.55 31.01 45.77 30.53 18.23 16.37 27.72 25.46 26.45 25.96 33.29 27.42 24.31 21.26 26.57 26.94 27.87 17.86 15.13

STWA MAE 14.13 14.58 14.36 4.09 9.97 23.45 37.35 18.72 6.90 6.54 6.72 3.73 5.37 7.27 9.46 6.46 9.44 9.08 13.25 17.55
MAPE 21.06 21.08 21.07 28.11 19.79 15.24 13.09 19.05 28.70 32.11 30.41 37.60 31.66 27.70 25.65 30.65 44.11 40.83 18.69 15.66

SCNN
MAE 12.62 12.78 12.70 4.19 9.26 20.27 31.58 16.33 6.55 6.16 6.36 3.48 5.13 7.03 8.76 6.10 5.71 5.54 12.24 16.13
MAPE 21.29 20.88 21.09 29.29 19.45 14.49 12.17 18.85 27.49 32.90 30.20 34.73 31.10 27.90 24.84 29.64 28.62 28.44 17.31 14.65

AdaRNN
MAE 15.16 16.96 16.06 4.81 17.97 29.20 35.25 21.81 7.22 6.13 6.68 3.27 5.45 8.00 10.35 6.77 5.96 8.71 18.71 25.77
MAPE 41.49 32.21 36.85 35.52 35.59 40.89 46.73 39.68 29.64 33.34 31.49 30.80 32.83 31.57 28.52 30.93 32.51 39.62 25.34 22.32

CIGA MAE 15.23 15.34 15.29 5.32 8.76 19.19 27.65 15.23 6.47 5.76 6.12 3.21 4.73 6.72 9.07 5.93 5.96 6.17 13.08 17.85
MAPE 18.95 21.51 20.23 27.11 17.02 13.33 16.09 18.39 29.27 32.61 30.94 34.82 28.69 25.08 21.99 27.64 29.97 31.97 19.48 16.70

STNSCM MAE 14.69 14.95 14.82 4.75 8.54 17.72 25.69 14.18 5.97 5.29 5.63 3.03 4.60 5.86 8.37 5.47 5.96 6.54 12.55 16.59
MAPE 23.63 23.39 23.51 24.11 22.65 12.43 11.11 17.58 26.67 29.91 28.29 26.84 27.00 23.28 20.24 24.34 29.51 28.33 18.16 15.67

CauSTG MAE 16.08 15.61 15.85 6.95 15.85 36.19 65.90 31.22 8.01 5.67 6.84 4.07 6.00 7.97 9.61 6.91 6.38 7.18 21.62 27.90
MAPE 31.98 30.22 31.10 42.07 29.67 22.23 19.71 28.42 29.86 29.53 29.70 38.46 32.83 27.33 24.12 30.69 28.80 31.61 24.71 21.18

CaST
MAE 13.15 14.36 13.76 4.89 9.87 16.90 26.91 14.64 5.70 5.99 5.84 2.71 4.75 6.18 8.15 5.45 6.72 6.43 12.35 16.44
MAPE 19.53 18.44 18.99 31.84 20.30 14.55 11.84 19.63 26.31 29.43 27.87 26.80 29.77 26.91 24.69 27.04 32.40 32.32 18.87 15.50

STEVE
MAE 10.43 10.51 10.47 3.47 8.02 16.52 25.61 13.40 5.13 4.73 4.93 2.21 4.13 5.59 7.09 4.75 4.87 4.64 10.94 14.47
MAPE 16.46 16.06 16.26 21.93 16.20 11.08 9.36 14.64 22.89 26.13 24.51 24.44 26.89 23.17 20.06 23.64 22.94 22.40 16.46 13.61

consisting of all clusters in the training set, and we process the
distribution so that it contains only one cluster, thus realizing SDS.

4.2 Overall Performance
We run all models five times and report the mean results in Tab. 1.
The details of NYCBike2 and BJTaxi are in Appendix A.2.1. From
Tab. 1, we have four key findings: (1) STEVE consistently outper-
forms all competing baselines across every task on four datasets (ac-
cording to the Nemenyi test at level 0.05 in Appendix A.2.3), while
the second-best model is not consistent across all cases. This shows
that STEVE offers more stable and reliable results, highlighting its
robustness and adaptability to various distribution-shift scenarios.
(2) There is no significant uplift of unsupervised disentanglement-
based methodsw.r.t. classical ST prediction methods, indicating that
decoupling without supervised signals does not effectively improve
the model performance. That is why we incorporate self-supervised
signals with disentanglement. (3) Some of the models against distri-
bution shift yield unsatisfactory results. For instance, AdaRNN and
CIGA fail to fully capture spatial and temporal dependencies. Mean-
while, CauSTG primarily focuses on learning invariant relations
across different confounders, overlooking the importance of cap-
turing variant relations in spatiotemporal prediction. Additionally,
CaST’s forced discretization of a continuous temporal environment

disrupts the intrinsic structure of spatiotemporal data, increasing
modeling difficulty. This confirms our model’s effectiveness in mod-
eling dynamic confounders in a basis vector approach without the
need for discretization. (4) While baseline models such as AGCRN
and STNSCM can achieve runner-up MAE performance in certain
cases, they exhibit a large margin in MAPE compared to STEVE.
This demonstrates that STEVE not only delivers small absolute
error but also showcases superior relative error across different
cases. The relative error is usually a better indicator of the model’s
generalizability to various cases than the absolute one as it allows
assessment of the precision of a result independently of the data
scale. In addition, our model also achieves decent training efficiency
and scalability (see Section 4.3.5 and 4.3.6), making it well-suited
for practical applications in real-world scenarios.

4.3 Further Analysis of STEVE
4.3.1 Ablation Study. To verify our model design, we carry out ab-
lation experiments on the following variants: (a) w/o cfd removes
the confounder bank and takes 𝑸 as the confounder representation;
(b)w/o ssl removes the SSL tasks in Eq. (18); (c)w/o ad disables the
adversarial disentanglement module in Eq. (20); (d) w/o mi does
not use the mutual information regularization in Eq. (22). The MAE
results of all datasets are shown in Tab. 2. We can observe that all

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jiahao Ji, Wentao Zhang, Jingyuan Wang, and Chao Huang

Table 2: Ablation study of STEVE on average MAE.

Dataset NYCTaxi NYCBike1 NYCBike2 BJTaxi

Metric TDS SDS TDS SDS TDS SDS TDS SDS

STEVE 10.47 13.40 4.93 4.75 4.87 4.64 10.94 14.47
(a) w/o cfd 10.65 13.67 5.04 4.85 5.04 4.79 11.13 14.81
(b) w/o ssl 11.70 15.01 4.96 4.77 5.06 4.94 11.78 15.56
(c) w/o ad 10.54 13.52 4.97 4.79 4.98 4.75 11.11 14.73
(d) w/o mi 10.72 13.69 4.96 4.78 5.03 4.80 11.00 14.55

实验2：Confounder有效性验证

• 不同类型区域不同时间段confounder分析

Working
Area

Traffic
Hub

Noon Off-peak Evening Peak

Base Confounder Base Confounder

W
ei

gh
t

V
al

u
e

W
ei

gh
t

V
al

u
e

JS Div: 0.008

Noon Off-peak Evening Peak

JS Div: 0.093

JS D
iv: 0

.0
1

0
JS D

iv:
0

.0
8

2

Flow series

Flow series

Figure 5: Confounder distribution of distinct locations at
different time periods. JS Div: Jensen–Shannon divergence.

four components contribute to the model’s overall performance.
Specifically, variants (a) and (b) show a great decrease, indicating
that our proposed confounder bank can effectively extract con-
founder representation from limited observed ST data with the
aid of SSL injecting representative confounder information. Be-
sides, the impact of removing these components on performance is
more pronounced for NYCTaxi and BJTaxi compared to NYCBike1
and NYCBike2 as taxi data possess more complex spatiotemporal
relations and are more sensitive to confounder modeling.

4.3.2 Analysis of Confounder Learning. As introduced in Section
3.1.2, our confounder extractor can generatemeaningful confounder
embedding for each sample via a unique weight vector 𝜶 and con-
founder bank. To verify this, we visualize the weight distribution of
different samples from NYCTaxi in Fig. 5. We have two key observa-
tions: (1) The divergence in the weight distributions for the working
area and traffic hub (especially in peak hours) suggests that our
model learned the differences in the environments corresponding
to these two types of zones. (2) From noon off-peak to evening
peak, the distribution of working areas gradually concentrates on a
few base confounders, while that of traffic hubs remains dispersed.
This shows that the learned environments at traffic hubs are con-
sistently complex while working areas can be more regular in the
evening peak, highlighting the ability of our model to capture the
characteristics of both types of zones.

4.3.3 Generalization to Unseen Confounders. In the COSSL module
in Section 3.2, we subtly selected representative self-supervised
signals to guide our model in capturing information about latent
confounders, thereby improving the robustness and generalizability
of the model in these latent environments. To evaluate this, we
collect the weather data of NYCTaxi, which is not exposed to model
training.We compare STEVEwith three spatiotemporal models that
do not employ self-supervised signals in solving the distribution
shift problem, and the results are displayed in Fig. 6(a). We can
observe that STEVE consistently beats other baselines in all three

实验3：泛化到unseen confounder

•不同天气下的泛化能力

（a） （b）

Figure 6: (a) Unseen confounder generalizationw.r.t.MAE. (b)
The learned representations of corresponding confounders.

(a) w/o MIM (𝑆 = 0.006) (b) w/ MIM (𝑆 = 0.188)

Figure 7: Visualization of confounder-related representation
𝑪 (red circle marker) and confounder-irrelevant representa-
tion 𝑯 (purple triangle marker). 𝑆 is Silhouette Score.

weather conditions. This demonstrates the effectiveness of self-
supervised signals’ enhancement in confounder representations,
making them robust to confounders not seen before. Next, we dive
into the weather confounder representations learned by our model.
The weights of these confounders are scattered in Fig. 6(b) by using
t-SNE algorithm [40]. From the results, we have two findings: (1)
The confounder representations for the same type of weather are
relatively close. Moreover, the representations of snowy days are
more compact compared to those of sunny days, indicating snowy
days characterize a more homogeneous confounder environment.
(2) In the representation space, the sunny confounder is closer
to cloudy and farther from snowy. This highlights our model’s
capability to extract informative confounder representations with
the guidance of self-supervised signals.

4.3.4 Representation Visualization. As introduced in Section 3.3.2,
we propose to use Mutual Information Minimization (MIM) loss
to disentangle representations 𝑯 and 𝑪 from the distribution per-
spective. To verify this, we randomly took some samples from the
test set to generate the corresponding 𝑯 and 𝑪 , and then used the
t-SNE algorithm [40] to convert them as two-dimensional embed-
ding vectors for visualization. As depicted in Fig. 7, w/o MIM and
w/MIM denote the results without and with MIM loss, respectively.
It can be seen that MIM facilitates the separation of distribution of
𝑯 and 𝑪 in the representation space, thus enhancing distributional
independence for disentangled representations.

4.3.5 Model Efficiency. In this section, we assess the efficiency of
ourmodel. Specifically, wemeasure the per-epoch training/inference
time of all methods on all datasets, and the results are summarized
in Tab. 3. To ensure fairness, all experiments are conducted on an
Ubuntu server with an NVIDIA RTX 3090 with the same batch size.
From the results, we can observe that our model reduces the train-
ing and inference time by 73.7% and 81.9% on average compared to
the best baseline AGCRN. While some baselines such as STGCN
and COST surpass our model in time cost, our model achieves a
win-win situation in terms of performance and training efficiency
by combining the performance results in Tab. 1.

Seeing the Unseen: Learning Basis Confounder Representations for Robust Traffic Prediction KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Table 3: Computation time cost investigation by train-
ing/inference time per epoch in seconds.

Methods NYCTaxi NYCBike1 NYCBike2 BJTaxi

STGCN 1.39/0.05 1.07/0.07 1.37/0.06 26.22/1.39
AGCRN 25.94/6.34 9.82/1.24 25.23/5.95 68.22/13.05
ASTGNN 12.91/1.14 9.48/0.74 10.14/0.96 35.16/3.43
HimNet 5.43/1.27 9.26/1.96 5.63/1.28 53.37/9.63

COST 3.21/1.42 3.41/1.82 3.27/1.37 6.32/5.98
ST-Norm 5.28/0.37 9.62/0.48 5.02/0.36 12.98/0.78
STWA 13.40/2.43 13.62/1.32 12.53/2.23 53.61/10.90
SCNN 15.34/3.54 14.96/1.91 14.72/2.74 65.03/7.41

AdaRNN 16.92/2.43 8.83/1.13 16.32/2.01 55.78/8.26
CIGA 17.36/0.95 16.73/0.67 16.89/0.87 61.06/3.34

STNSCM 1.66/0.19 2.79/0.32 1.74/0.19 4.94/0.68
CauSTG 3.22/1.61 4.92/2.33 3.15/1.57 10.62/4.30
CaST 25.31/7.20 37.82/8.13 21.07/6.52 81.93/18.73

STEVE 4.51/0.52 3.83/0.45 2.22/0.31 27.13/2.98

25% 50% 75% 100%
Cardinality of dataset

0

5

10

15

In
fe

re
nc

e
tim

e
(s

)

AGCRN
STEVE

25% 50% 75% 100%
Cardinality of graph

0

5

10

15

In
fe

re
nc

e
tim

e
(s

)

AGCRN
STEVE

Figure 8: Scalability performance vs. cardinality

4.3.6 Model Scalability. In the section, we explore the scalability
performance of STEVE compared with AGCRN (the best baseline),
focusing on their ability to handle variations in dataset size and
graph size. The evaluation employs the BJTaxi dataset that contains
traffic data from 1024 graph nodes over 4 months. Fig. 8 depicts the
experimental results. Regarding the dataset size, 25% denotes a one-
month dataset, 50% denotes a two-month dataset, and so on. For
the graph size, we decompose the input graph into four connected
subgraphs with the same node number. Here, 25% implies using
nodes from the first subgraph to extract an adjacency matrix from
the original one, 50% involves nodes from the first two subgraphs,
and so on. From Fig. 8, we can observe that the prediction time for
both models increases as the dataset and graph size scale. However,
the increasing trend of AGCRN is sharp, while STEVE’s trend is
more stable. This demonstrates our model’s potential scalability in
large-scale ST forecasting.

5 Related Work
Spatial-Temporal Traffic Forecasting has received increasing
attention due to its pivotal role in intelligent transportation man-
agement [24, 44, 45]. Early contributions emerged from the time
series community and predominantly utilized the ARIMA family to
model traffic data [5, 30]. However, these methods usually rely on
stationary assumptions, leading to limited representation power for
traffic data. Recent advancements have introduced a variety of deep
learning techniques that do not rely on stationary assumptions,
enabling the capture of complex traffic dependencies more effec-
tively. For instance, methods like recurrent neural networks [31, 47]
and temporal convolutional networks [43, 49, 52] are employed to
capture temporal dependencies. Regarding spatial dependencies,

convolutional neural networks [51, 53] are used for grid-based spa-
tiotemporal data, while graph neural networks [24, 29, 39] and
attention mechanism [21, 28, 42] are explored to incorporate road
network information. Recently, several studies have investigated the
confounder issue, concentrating on invariant relation learning [56],
front-door adjustment [13], or a combination of both front-door
and back-door adjustments [50]. However, these methods rely on
predefined discrete confounder values that are often impractical
in real-world scenarios. Consequently, they struggle to address
continuous and unknown confounders, which is our primary focus.

Self-Supervised Learning aims to distill valuable information
from input data to enhance the quality of representations [27]. The
fundamental paradigm involves initially augmenting input data and
subsequently employing self-supervised tasks to serve as pseudo
labels for the purpose of representation learning [23, 36]. These
tasks are usually infused with domain knowledge to encourage
representations to exhibit specific characteristics. This approach
has achieved remarkable success within various data such as text
data [14], image data [8], and audio data [34]. Motivated by these
works, we devise customized self-supervised tasks tailored to infuse
various information into confounder representations.

Disentangled Representation Learning aims to learn iden-
tifying and disentangling the underlying factors hidden in the ob-
servable data in representation form [4], which has been verified
to increase the model generality [2]. It was initially used to analyze
visual data [22] and has recently been introduced to the field of spa-
tiotemporal prediction [39]. Some studies focus on disentangling
from the time dimension, e.g., seasonal-trend disentanglement and
frequency disentanglement [11, 18, 48]. Somework focuses on struc-
tural disentanglement from the spatial dimension [12, 25, 26]. How-
ever, they are mainly unsupervised disentangling methods, which
proved to be unable to disentangle from the corresponding under-
lying factors [33]. In contrast, this paper utilizes self-supervised
signals to ensure the effectiveness of disentanglement.

6 Conclusion and Future Work
This paper presented the first attempt to extend back-door ad-
justment to handle continuous or unknown confounders in deep-
learning traffic prediction. By utilizing a basis vector approach, we
proposed a STEVE model that creates a base confounder bank to
represent any confounder as an adaptive linear combination of a
group of basis confounder representations, with the aid of three
self-supervised auxiliary tasks. Then, we decoupled the confounder-
irrelevant relations from confounder effects and used both types of
relations for robust traffic prediction. Extensive experiments over
four datasets verified the effectiveness, robustness, and scalability
of our model. In the future, we plan to extract representations of
common confounders (such as weather and holidays) to quantify
the quantitative impact of these confounders on traffic states and
make counterfactual traffic predictions under intervention settings.

Acknowledgments
Prof. Jingyuan Wang’s work was partially supported by the Na-
tional Natural Science Foundation of China (No. 72222022, 72171013,
72242101), and the Special Fund for Health Development Research
of Beijing (2024-2G-30121).

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jiahao Ji, Wentao Zhang, Jingyuan Wang, and Chao Huang

References
[1] Hervé Abdi, Lynne J Williams. 2010. Principal Component Analysis. Wiley

Interdiscip. Rev. Comput. Stat. 2, 4 (2010), 433–459.
[2] Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, et al. 2017. Deep Variational

Information Bottleneck. In Proc. of ICLR.
[3] Lei Bai, Lina Yao, Can Li, et al. 2020. Adaptive Graph Convolutional Recurrent

Network for Traffic Forecasting. In Proc. of NeurIPS. 17804–17815.
[4] Yoshua Bengio, Aaron Courville, Pascal Vincent. 2013. Representation Learning:

A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 8
(2013), 1798–1828.

[5] Manoel Castro-Neto, Young-Seon Jeong, Myong-Kee Jeong, et al. 2009. Online-
SVR for Short-Term Traffic Flow Prediction under Typical and Atypical Traffic
Conditions. Expert Syst. Appl. 36, 3, Part 2 (2009), 6164–6173.

[6] Lu Chen, Yunjun Gao, Ziquan Fang, et al. 2019. Real-time distributed co-
movement pattern detection on streaming trajectories. Proc. of VLDB 12, 10
(2019), 1208–1220.

[7] Lu Chen, Qilu Zhong, Xiaokui Xiao, et al. 2018. Price-and-time-aware dynamic
ridesharing. In ICDE. 1061–1072.

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, et al. 2020. A Simple Frame-
work for Contrastive Learning of Visual Representations. In Proc. of ICML. 1597–
1607.

[9] Yongqiang Chen, Yonggang Zhang, Yatao Bian, et al. 2022. Learning Causally
Invariant Representations for Out-of-Distribution Generalization on Graphs. In
Proc. of NeurIPS. 22131–22148.

[10] Pengyu Cheng, Weituo Hao, Shuyang Dai, et al. 2020. CLUB: A Contrastive
Log-Ratio Upper Bound of Mutual Information. In Proc. of ICML. 1779–1788.

[11] Jinliang Deng, Xiusi Chen, Renhe Jiang, et al. 2024. Disentangling Structured
Components: Towards Adaptive, Interpretable and Scalable Time Series Forecast-
ing. IEEE TKDE 36, 8 (2024), 3783–3800.

[12] Jinliang Deng, Xiusi Chen, Renhe Jiang, et al. 2021. ST-Norm: Spatial and Tem-
poral Normalization for Multi-Variate Time Series Forecasting. In Proc. of KDD.
269–278.

[13] Pan Deng, Yu Zhao, Junting Liu, et al. 2023. Spatio-Temporal Neural Structural
Causal Models for Bike Flow Prediction. In Proc. of AAAI. 4242–4249.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, et al. 2019. BERT: Pre-Training of
Deep Bidirectional Transformers for Language Understanding. In Proc. of NAACL.
4171–4186.

[15] Xin Ding, Lu Chen, Yunjun Gao, et al. 2018. UlTraMan: A unified platform for big
trajectory data management and analytics. Proc. of VLDB 11, 7 (2018), 787–799.

[16] Zheng Dong, Renhe Jiang, Haotian Gao, et al. 2024. Heterogeneity-Informed
Meta-Parameter Learning for Spatiotemporal Time Series Forecasting. In Proc. of
KDD. 631–641.

[17] Yuntao Du, Jindong Wang, Wenjie Feng, et al. 2021. AdaRNN: Adaptive Learning
and Forecasting of Time Series. In Proc. of CIKM. 402–411.

[18] Yuchen Fang, Yanjun Qin, Haiyong Luo, et al. 2023. When Spatio-Temporal Meet
Wavelets: Disentangled Traffic Forecasting via Efficient Spectral Graph Attention
Networks. In ICDE. 517–529.

[19] Yaroslav Ganin, Victor S. Lempitsky. 2015. Unsupervised Domain Adaptation by
Backpropagation. In Proc. of ICML. 1180–1189.

[20] Jianhua Guo, Wei Huang, Billy M Williams. 2014. Adaptive Kalman Filter Ap-
proach for Stochastic Short-Term Traffic Flow Rate Prediction and Uncertainty
Quantification. Transp. Res. Part C Emerg. Technol. 43, Part 1 (2014), 50–64.

[21] Shengnan Guo, Youfang Lin, Huaiyu Wan, et al. 2022. Learning Dynamics and
Heterogeneity of Spatial-Temporal Graph Data for Traffic Forecasting. IEEE
TKDE 34, 11 (2022), 5415–5428.

[22] Irina Higgins, Loic Matthey, Arka Pal, et al. 2017. Beta-VAE: Learning Basic
Visual Concepts with a Constrained Variational Framework. In Proc. of ICLR.

[23] Jiahao Ji, Jingyuan Wang, Chao Huang, et al. 2023. Spatio-Temporal Self-
Supervised Learning for Traffic Flow Prediction. In Proc. of AAAI. 4356–4364.

[24] Jiahao Ji, JingyuanWang, Zhe Jiang, et al. 2022. STDEN: Towards Physics-Guided
Neural Networks for Traffic Flow Prediction. In Proc. of AAAI. 4048–4056.

[25] Jiahao Ji, Jingyuan Wang, Zhe Jiang, et al. 2020. Interpretable Spatiotemporal
Deep Learning Model for Traffic Flow Prediction Based on Potential Energy
Fields. In Proc. of ICDM. 1076–1081.

[26] Jiahao Ji, Jingyuan Wang, Yu Mou, et al. 2023. Multi-Factor Spatio-Temporal
Prediction based on Graph Decomposition Learning. arXiv:2310.10374 (2023).

[27] Jiahao Ji, Jingyuan Wang, Junjie Wu, et al. 2022. Precision CityShield against
Hazardous Chemicals Threats via Location Mining and Self-Supervised Learning.
In Proc. of KDD. 3072–3080.

[28] Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, et al. 2023. PDFormer: Propagation
Delay-Aware Dynamic Long-Range Transformer for Traffic Flow Prediction. In
Proc. of AAAI. 4365–4373.

[29] Jiawei Jiang, Dayan Pan, Houxing Ren, et al. 2023. Self-Supervised Trajectory
Representation Learning with Temporal Regularities and Travel Semantics. In
ICDE. 843–855.

[30] S Vasantha Kumar, Lelitha Vanajakshi. 2015. Short-Term Traffic Flow Prediction
Using Seasonal ARIMA Model with Limited Input Data. Eur. Transp. Res. Rev. 7,

3 (2015), 1–9.
[31] Yaguang Li, Rose Yu, Cyrus Shahabi, et al. 2018. Diffusion Convolutional Recur-

rent Neural Network: Data-driven Traffic Forecasting. In Proc. of ICLR.
[32] Shikun Liu, Edward Johns, Andrew J Davison. 2019. End-to-End Multi-Task

Learning with Attention. In Proc. of CVPR. 1871–1880.
[33] Francesco Locatello, Stefan Bauer, Mario Lucic, et al. 2019. Challenging Common

Assumptions in the Unsupervised Learning of Disentangled Representations. In
Proc. of ICML. 4114–4124.

[34] A. Oord, Y. Li, O. Vinyals. 2018. Representation Learning with Contrastive
Predictive Coding. CoRR (2018).

[35] Judea Pearl. 2000. Causality: Models, Reasoning and Inference. Cambridge Univer-
sity Press.

[36] Houxing Ren, Jingyuan Wang, Wayne Xin Zhao. 2022. Generative Adversarial
Networks Enhanced Pre-Training for Insufficient Electronic Health Records
Modeling. In Proc. of KDD. 3810–3818.

[37] Douglas Reynolds. 2009. Gaussian Mixture Models. In Encyclopedia of Biometrics.
Springer US, Boston, MA, 659–663.

[38] Peter J Rousseeuw. 1987. Silhouettes: A Graphical Aid to the Interpretation and
Validation of Cluster Analysis. J. Comput. Appl. Math. 20 (1987), 53–65.

[39] Zezhi Shao, Zhao Zhang, Wei Wei, et al. 2022. Decoupled Dynamic Spatial-
Temporal Graph Neural Network for Traffic Forecasting. Proc. of VLDB 15, 11
(2022), 2733–2746.

[40] Laurens Van der Maaten, Geoffrey Hinton. 2008. Visualizing Data Using T-SNE.
J. Mach. Learn. Res. 9, 86 (2008), 2579–2605.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. 2017. Attention Is All You
Need. In Proc. of NeurIPS. 5998–6008.

[42] Jingyuan Wang, Qian Gu, Junjie Wu, et al. 2016. Traffic Speed Prediction and
Congestion Source Exploration: A Deep Learning Method. In Proc. of ICDM.
499–508.

[43] Jingyuan Wang, Jiahao Ji, Zhe Jiang, et al. 2022. Traffic Flow Prediction Based on
Spatiotemporal Potential Energy Fields. IEEE TKDE 35, 9 (2022), 9073–9087.

[44] Jingyuan Wang, Jiawei Jiang, Wenjun Jiang, et al. 2021. LibCity: An Open Library
for Traffic Prediction. In Proc. of SIGSPATIAL. 145–148.

[45] Jingyuan Wang, Yu Mao, Jing Li, et al. 2015. Predictability of Road Traffic and
Congestion in Urban Areas. PLOS ONE 10, 4 (2015), e0121825.

[46] JingyuanWang, Junjie Wu, ZeWang, et al. 2019. Understanding Urban Dynamics
via Context-Aware Tensor Factorization with Neighboring Regularization. IEEE
TKDE 32, 11 (2019), 2269–2283.

[47] Jingyuan Wang, Ning Wu, Wayne Xin Zhao, et al. 2019. Empowering A* Search
Algorithms with Neural Networks for Personalized Route Recommendation. In
Proc. of KDD. 539–547.

[48] GeraldWoo, Chenghao Liu, Doyen Sahoo, et al. 2022. CoST: Contrastive Learning
of Disentangled Seasonal-Trend Representations for Time Series Forecasting. In
Proc. of ICLR.

[49] Z Wu, S Pan, G Long, et al. 2019. Graph WaveNet for Deep Spatial-Temporal
Graph Modeling. In Proc. of IJCAI. 1907–1913.

[50] Yutong Xia, Yuxuan Liang, HaominWen, et al. 2023. Deciphering Spatio-Temporal
Graph Forecasting: A Causal Lens and Treatment. In Proc. of NeurIPS. 37068–
37088.

[51] Huaxiu Yao, Xianfeng Tang, Hua Wei, et al. 2019. Revisiting Spatial-Temporal
Similarity: A Deep Learning Framework for Traffic Prediction. In Proc. of AAAI.
5668–5675.

[52] Bing Yu, Haoteng Yin, Zhanxing Zhu. 2018. Spatio-Temporal Graph Convolu-
tional Networks: A Deep Learning Framework for Traffic Forecasting. In Proc. of
IJCAI. 3634–3640.

[53] Junbo Zhang, Yu Zheng, Dekang Qi. 2017. Deep Spatio-Temporal Residual
Networks for Citywide Crowd Flows Prediction. In Proc. of AAAI. 1655–1661.

[54] Yu Zhao, Pan Deng, Junting Liu, et al. 2023. Spatial temporal Neural Structural
Causal Models for Bike Flow Prediction. In Proc. of AAAI. 4242–4249.

[55] Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, et al. 2020. Gman: A Graph
Multi-Attention Network for Traffic Prediction. In Proc. of AAAI. 1234–1241.

[56] Zhengyang Zhou, Qihe Huang, Kuo Yang, et al. 2023. Maintaining the Status
Quo: Capturing Invariant Relations for OOD Spatiotemporal Learning. In Proc.
of KDD. 3603–3614.

A Supplementary Material
A.1 Experimental Setting
A.1.1 Datasets. We conducted experiments on four commonly
used real-world large-scale datasets released by [23]. These datasets
are generated by millions of taxis or bikes on average and contain
thousands of time steps and hundreds of regions. The statistical
information is in Tab. 4. Two of them are bike datasets, while the
others are taxi datasets. Bike data record bike rental demands. Taxi

Seeing the Unseen: Learning Basis Confounder Representations for Robust Traffic Prediction KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Table 4: Statistics of Datasets.

Dataset NYCTaxi NYCBike1 NYCBike2 BJTaxi

Time interval 30 min 1 hour 30 min 30 min
regions 10×20 16×8 10×20 32×32

taxis/bikes 22m+ 6.8k+ 2.6m+ 34k+
samples 2880 4392 2880 5596

data record the number of taxis coming to and departing from a
region given a specific time interval, i.e., inflow and outflow.

We give more detailed descriptions of the four datasets as fol-
lows. NYCTaxi [51] measures the 30-minute level taxi flow from
1/Jan/2015 to 01/Mar/2015. NYCBike series datasets consist of hourly
level dataset from 1/Apr/2014 to 30/Sept/2014 (NYCBike1 [53])
and one 30-minute level dataset from 1/Jul/2016 to 29/Aug/2016
(NYCBike2 [51]). BJTaxi [53] is also a 30-minute level taxi dataset
from 01/Mar/2015 to 30/Jun/2015, collected in Beijing city. For all
datasets, the traffic network is constructed by the adjacency relation
of regions. For a prediction sample at time slot 𝑡 , we use two types
of past data as inputs: 𝑖) data from 4 hours before 𝑡 , and 𝑖𝑖) data
from 2 hours before and after the time slots 𝑡 −𝑇𝑑𝑎𝑦 , 𝑡 − 2𝑇𝑑𝑎𝑦 , and
𝑡 − 3𝑇𝑑𝑎𝑦 , where 𝑇𝑑𝑎𝑦 is the number of time slots in one day. The
second type incorporates periodicity information into the predic-
tion. We adopt a sliding window strategy to generate samples, and
then split each dataset into the training, validation, and test sets
with a ratio of 7:1:2.

A.1.2 Baselines. Since traditional statistical models and shallow
machine learningmethods have proven difficult to effectively model
ST traffic data [3, 21], we compare STEVE with recent state-of-the-
art baselines as follows.
𝑖) Spatial-temporal prediction methods based GNNs:
• STGCN [52]: a graph convolution-based model that combines
1D-convolution to capture spatial and temporal correlations.
• AGCRN [3]: it enhances the classical graph convolution with an
adaptive adjacency matrix and combines it into RNN.
• ASTGNN [21]: it incorporates self-attention blocks to model the
dynamics of traffic data in both temporal and spatial dimensions.
• HimNet [16]: it captured spatiotemporal heterogeneity by learn-
ing spatial and temporal embeddings, and proposed a novel meta-
parameter learning paradigm to learn spatiotemporal-specific
parameters from meta-parameter pools.

𝑖𝑖) Disentanglement-based ST prediction methods:
• COST [48]: a time series model that disentangles seasonal and
trend information from a causal lens to enhancemodel robustness
to distribution shifts in time series forecasting.
• ST-Norm [12]: it introduces temporal and spatial normalization
modules to refine the high-frequency and local components of
the original ST data, respectively.
• STWA [18]: it disentangles the complex traffic data into stable
trends and fluctuating events for accurate prediction.
• SCNN [11]: it disentangles the input data into long-term, sea-
sonal, short-term, and co-evolving components iteratively and
then fusing them for spatiotemporal prediction.

𝑖𝑖𝑖) Models considering distribution shift:
• AdaRNN [17]: a purely sequential model that addresses distri-
bution shift challenges. It clusters historical time sequences into

0

1

2

3

(a) NYCTaxi

0

1

2

3

(b) NYCBike1

0

1

2

(c) NYCBike2

0

1

2

3

4

(d) BJTaxi

1234567891011121314

AadRNN
CauST
COST
STWA
CIGA
CaST

SCNN STNSCM
ST-Norm
HimNet
ASTGNN
STGCN
AGCRN
STEVE

CD

(e) Critical Difference (CD) diagram of the Nemenyi test

Figure 9: (a)-(d): Spatial clustering results of all datasets. The
cluster identification (ID) is next to the color bar. A larger
cluster ID means a higher level of popularity in the corre-
sponding region. (e): CD diagram of the Nemenyi test. The
horizontal axis depicts the average ranking of each model
across all scenarios of both metrics. Bold black lines con-
nect two models when their ranking difference is below the
CD value (at a 5% significance level), indicating statistical
insignificance. Otherwise, they are significantly different.

different classes and dynamically matches input data to these
classes to identify contextual information.
• CIGA [9]: it is a graph model that captures the invariance of
graphs via causal models to guarantee generalization under vari-
ous distribution shifts.
• STNSCM [13]: it neuralizes a structural causal model and in-
corporates external conditions such as time factors and weather
for spatiotemporal traffic prediction in OOD scenarios. For fair
comparisons, we only use time factors because weather data is
not available in all datasets.
• CauSTG [56]: it is a spatiotemporal model that captures invariant
relations for generalization to distribution shift data.
• CaST [50]: it leverages a causal lens to handle the temporal
distribution shift issue by back-door adjustment and captures the
dynamic spatial causation via edge-level graph convolution.

A.1.3 Parameter Setting for STEVE. We conducted a grid search
to optimize the hyperparameters of our model across all datasets,
focusing on parameters such as hidden dimension 𝐷 , momentum
coefficient 𝛾 , number of base confounders 𝐾 , batch size, kernel
sizes in TCL and GCL, and learning rate. The best kernel size is
3 for all datasets. The batch sizes of NYCTaxi and NYCBike2 are
64, while those of NYCBike1 and BJTaxi are 32. The rest of the
hyper-parameter settings are in Appendix A.2.4.

A.2 More Experimental Results
A.2.1 Performance on NYCBike2 and BJTaxi. Tab. 5 presents the
complete results for the baselines on NYCBike2 and BJTaxi. We
can observe similar phenomena as the results on NYCTaxi and
NYCBike1, e.g., our STEVE surpasses other baselines in most cases.

A.2.2 Spatial Clustering Results. Recall that in the spatial sce-
nario, we split all regions into clusters to simulate urban functional

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jiahao Ji, Wentao Zhang, Jingyuan Wang, and Chao Huang

Table 5: Complete performance comparison on NYCBike2 and BJTaxi. The bold/underlined font means the best/the second-best
result. Work: Workday. Holi: Holiday. 𝑐𝑖 : Spatial entity cluster with id 𝑖. Avg: Average results of different tasks.

Model
Dataset NYCBike2 BJTaxi

Task TDS SDS TDS SDS
Work Holi Avg c0 c1 c2 Avg Work Holi Avg c0 c1 c2 c3 c4 Avg

STGCN
MAE 5.43 5.53 5.48 3.94 4.90 7.05 5.30 12.52 11.77 12.14 4.97 9.45 13.84 20.64 30.13 15.80
MAPE 25.09 30.71 27.90 37.47 26.47 20.17 28.04 14.91 19.34 17.13 23.88 15.41 12.38 10.56 9.34 14.31

AGCRN MAE 5.35 5.43 5.39 3.80 4.74 7.00 5.18 11.99 11.11 11.55 5.93 11.16 20.51 21.71 31.44 18.15
MAPE 24.62 30.15 27.39 36.73 26.04 19.75 27.51 14.68 18.98 16.83 28.87 15.37 12.77 11.46 9.29 15.55

ASTGNN MAE 5.25 5.62 5.43 3.58 4.94 7.34 5.29 12.09 11.03 11.56 4.95 9.37 13.40 19.74 27.89 15.07
MAPE 28.16 35.24 31.70 37.62 27.86 22.06 29.18 15.31 19.77 17.54 22.99 15.06 12.04 10.90 9.53 14.08

HimNet
MAE 5.31 5.67 5.49 3.95 4.75 7.11 5.27 12.60 11.48 12.04 5.09 9.62 14.18 20.84 30.69 16.08
MAPE 24.49 31.44 27.96 36.50 25.87 20.61 27.66 14.45 18.98 16.72 22.49 15.42 12.59 10.62 9.43 14.11

COST
MAE 7.06 7.50 7.28 3.91 5.87 10.38 6.72 14.05 13.87 13.96 5.18 10.35 15.75 24.80 37.31 18.68
MAPE 31.23 39.32 35.28 36.68 31.92 33.54 34.05 17.10 22.41 19.76 23.76 18.62 15.91 14.50 12.94 17.15

ST-Norm MAE 5.57 5.39 5.48 3.46 5.04 7.01 5.17 13.26 13.36 13.31 5.79 10.71 15.50 22.19 31.08 17.05
MAPE 26.25 27.62 26.94 33.33 28.86 21.42 27.87 16.75 18.97 17.86 25.63 16.87 13.38 10.79 8.99 15.13

STWA MAE 10.00 8.87 9.44 3.86 7.77 15.62 9.08 13.24 13.25 13.25 5.22 10.16 15.30 23.09 33.98 17.55
MAPE 36.38 51.83 44.11 34.07 44.37 44.06 40.83 15.52 21.87 18.69 23.99 17.13 14.27 12.19 10.71 15.66

SCNN
MAE 5.78 5.65 5.71 3.64 5.15 7.82 5.54 12.68 11.80 12.24 5.25 9.82 14.39 21.16 30.05 16.13
MAPE 25.99 31.24 28.62 34.60 28.01 22.70 28.44 15.24 19.37 17.31 23.67 16.00 13.11 11.00 9.49 14.65

AdaRNN
MAE 8.18 7.35 5.96 5.02 7.56 13.53 8.71 19.63 17.78 18.71 6.33 13.99 22.63 33.67 52.23 25.77
MAPE 36.54 28.47 32.51 39.72 38.49 40.66 39.62 21.89 28.79 25.34 27.86 24.17 22.03 20.02 17.50 22.32

CIGA MAE 6.05 5.86 5.96 3.31 5.64 9.56 6.17 13.47 12.69 13.08 7.81 12.09 16.29 22.01 31.03 17.85
MAPE 31.49 28.45 29.97 37.79 28.77 29.34 31.97 16.71 22.24 19.48 29.14 16.88 13.91 12.99 10.58 16.70

STNSCM MAE 6.15 5.76 5.96 6.11 6.71 6.82 6.54 13.80 11.29 12.55 6.79 10.87 14.09 21.96 29.23 16.59
MAPE 27.88 31.13 29.51 29.68 27.62 27.68 28.33 16.96 19.36 18.16 23.87 18.43 14.22 12.22 9.64 15.67

CauSTG MAE 7.26 5.50 6.38 4.30 6.46 10.78 7.18 17.31 25.93 21.62 6.35 13.51 22.75 37.88 58.99 27.90
MAPE 28.87 28.72 28.80 38.22 30.75 25.85 31.61 19.27 30.15 24.71 28.44 20.77 19.69 18.95 18.07 21.18

CaST
MAE 6.25 7.19 6.72 5.01 5.70 8.59 6.43 12.93 11.76 12.35 5.28 10.11 14.42 21.12 31.25 16.44
MAPE 28.60 36.19 32.40 45.59 27.31 24.07 32.32 16.45 21.29 18.87 24.22 17.41 14.35 11.04 10.47 15.50

STEVE
MAE 4.75 4.98 4.87 2.82 4.46 6.64 4.64 11.22 10.66 10.94 4.62 8.90 12.94 18.91 27.00 14.47
MAPE 20.57 25.31 22.94 24.72 23.61 18.88 22.40 13.97 18.95 16.46 22.19 15.05 12.03 10.11 8.65 13.61

0.3 0.4 0.5 0.6

10.4

10.6

10.8
NYCTaxi

0.5 0.6 0.7 0.8
4.9
5.0
5.1
5.2
5.3

NYCBike1

0.5 0.6 0.7 0.8
4.7

4.8

4.9

5.0
NYCBike2

0.05 0.1 0.15 0.2

11.0

11.1

11.2

11.3
BJTaxi

(a) 𝛾 : Momentum coefficient

32 64 128 256
10.0

10.5

11.0

11.5

NYCTaxi

32 64 128 256

5.0

5.0

5.1

NYCBike1

32 64 128 256

4.5

5.0

5.5

6.0
NYCBike2

16 32 64 128
11.0

11.1

11.2

11.3
BJTaxi

(b) 𝐾 : Number of base confounder variables

16 32 64 128

10.0

11.0

12.0

13.0
NYCTaxi

16 32 64 128
4.8
5.0
5.2
5.4
5.6

NYCBike1

16 32 64 128
4.6
4.8
5.0
5.2

NYCBike2

16 32 64 128

11.0

12.0

BJTaxi

(c) 𝐷 : Hidden dimension

Figure 10: Parameter sensitivity of STEVE using MAEmetric.

areas. Since there is no function label, we use 𝑘-means cluster-
ing algorithm to label the regions. The best 𝑘 is determined by
the Silhouette Coefficient metric [38]. The input of 𝑘-means is
(𝑚𝑒𝑎𝑛,𝑚𝑒𝑑𝑖𝑎𝑛, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) of each region’s historical traf-
fic flows. Fig. 9(b)-9(d) presents the clustering results of all datasets.
The clustering results exhibit some meaningful patterns, e.g., the

clusters of the BJTaxi dataset imply the suburbs (ID 0) and ring
roads (ID 3).

A.2.3 Significance Test. To further emphasize the substantial im-
provement of our STEVE over the baseline models, we draw the
critical difference (CD) diagram to conduct a Nemenyi significance
test. As shown in Fig. 9(e), we can observe that our STEVE outper-
forms the best baseline significantly at a 5% significance level.

A.2.4 Impact of Hyper-parameters. In this part, we conduct ex-
periments to analyze the impacts of critical hyper-parameters: the
momentum coefficient 𝛾 , the number of base confounders 𝐾 , and
the hidden dimension 𝐷 , with results in Fig. 10. Firstly, the effect
of 𝛾 is shown in Fig. 10(a), where we vary it from 0.1 to 0.9 individ-
ually and omit some values for better plotting. The results indicate
that 0.4 is the optimal setting for the NYCTaxi dataset, 0.7 is op-
timal for the NYCBike1 dataset, 0.6 is optimal for the NYCBike2
dataset, and 0.1 is optimal for the BJTaxi dataset. The variation in
optimal settings across datasets is attributed to the distinct impact
of confounders. Secondly, the effect 𝐾 is shown in Fig. 10(b). We
can observe that a setting of 64 is optimal for the NYCTaxi and
BJTaxi datasets, while a setting of 128 is optimal for the NYCBike1
and NYCBike2 datasets. Thirdly, the effect of hidden dimension𝐷 is
given in Fig. 10(c), where we vary it in the set {16, 32, 64, 128}. The
results indicate 64 as the optimal settings for NYCTaxi, NYCBike1,
and NYCBike2 datasets and 32 for BJTaxi. Since different datasets
have different spatiotemporal dependencies, it is reasonable to use
different hidden dimensions for them.

	Abstract
	1 Introduction
	2 Notation and Problem Definition
	2.1 Notation
	2.2 Problem Definition

	3 Model
	3.1 Confounder Representation Generation
	3.2 Confounder-Oriented SSL
	3.3 Confounder-Irrelevant Relation Decoupling
	3.4 Model Training

	4 Experiment
	4.1 Experimental Setting
	4.2 Overall Performance
	4.3 Further Analysis of STEVE

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References
	A Supplementary Material
	A.1 Experimental Setting
	A.2 More Experimental Results

