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Traffic Flow Prediction Based on
Spatiotemporal Potential Energy Fields
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Abstract—Traffic flow prediction is a fundamental problem in spatiotemporal data mining. Most of the existing studies focuses on
designing statistical models to fit historical traffic data, which are purely data-driven approaches and fail to reveal the underlying
mechanisms of urban traffic. To address this issue, we propose the spatiotemporal potential energy field model (ST-PEF+), which
applies the field theory for human mobility to interpret the underlying mechanisms of urban traffic, and introduces the theory into
data-driven deep learning models. ST-PEF+ consists of a PEF extraction module and a data-driven module. Inspired by the field theory
for human mobility, the PEF extraction module adopts an algorithm to decompose the grid-based traffic flow graph into several
polytree-based potential energy fields (PEFs), where traffic flows from high potential locations to low potential locations, just as water is
driven by the gravity field. We also provide a theoretical analysis to ensure that the polytree decomposition algorithm can decompose
any traffic flow graph. In the data-driven module, ST-PEF+ learns a spatiotemporal deep learning model to predict the dynamics of
PEFs. The model adopts correlation-adaptive neural network structures, which consists of a temporal component for temporal
correlations and a spatial component for spatial correlations. The temporal component employs a GRU and DCN combined structure to
capture both short-term autocorrelation and long-term repeating patterns of PEFs. The spatial component extends the GAT using
weighted directed attention to model the asymmetric spatial structure in PEFs. The prediction results of traffic flow are finally derived
from PEFs that are predicted by the spatiotemporal deep learning model. We conduct extensive evaluations on three real-world traffic
datasets. The results show that our model outperforms the state-of-the-art baselines. In addition, case studies confirm that the PEFs
learned in our framework can reveal the underlying mechanisms of urban traffic, thus improving the model interpretability.

Index Terms—Potential Energy Fields, Spatiotemporal Data Mining, Interpretable Traffic Prediction, Field Theory for Human Mobility.
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1 INTRODUCTION

T RAFFIC flow prediction is a fundamental problem in
spatiotemporal data mining [1]. An accurate traffic flow

prediction model plays a critical role in real-world appli-
cations, such as traffic congestion management and public
safety maintenance. For example, vehicle flow prediction
of a city can support transportation departments for better
understanding and managing congestion [2] and crowd
flow prediction can help event organizers maintain crowd
safety [3].

In the literature, many statistical learning models are
proposed for traffic flow prediction. Early approaches fo-
cus on shallow statistical models that treat traffic flow as
time series and employ AutoRegressive Integrated Moving
Average (ARIMA), Kalman filtering [4], etc. to address the
prediction problem. In recent years, deep learning-based
traffic prediction models have drawn significant attention
from both industry and academia. These methods usually
apply Recurrent Neural Network (RNN) and its variants to
capture dynamic temporal dependencies of traffic flow [5],
[6], and use Convolutional Neural Network (CNN) to ex-
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tract spatial dependencies for traffic data with regular spa-
tial structures, such as grids [7], [8]. When traffic data are
defined on non-Euclidean structures such as road networks,
Graph Neural Network (GNN) become a more popular
approach to capture spatial dependencies [9], [10]. However,
most of these statistical learning models follow a data-
driven methodology (i.e., directly using a statistical model
to fit historical observation data) and lacks for revealing
the mechanisms of traffic flow. This defect reduces the
generalization of the prediction models and also makes
the models poorly interpretable. Although these models
have achieved impressive prediction performance in many
practical applications, they still cannot be trustingly applied
in some critical application areas, such as public safety and
emergency management.

In statistical physics, many theories are proposed to
interpret the mechanisms of traffic flow and human mo-
bility in cities. For example, the gravity model analogizes
the traffic flow between two locations as gravity that is
proportional to the masses (populations) and inversely pro-
portional to the distance between the two locations [11]. The
radiation law extends the gravity model through modeling
human mobility as radiation and absorption processes of
energy [12], [13]. The field theory further assumes human
mobilities are driven by a field where each location has a
potential and human moves from high potential locations
to low potential locations [14]. Compared with the data-
driven models, the statistical physics theories can reveal the
underlying mechanisms of human mobility and therefore
have better interpretability and generalizability. However,
for practical applications, the statistical physics theories
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usually cannot achieve satisfactory prediction performance
since they only capture the primary mechanisms of human
mobility but fail to model specific and localized correlations
in particular scenarios.

This paper proposes a hybrid model collaboratively
driven by physical theory and real-world data, Spatio-
Temporal Potential Energy Fields (ST-PEF+)1, to bring the
advantages of generalizability and interpretability of statis-
tical physics methods in data-driven traffic flow prediction
models. The ST-PEF+ model consists of a PEF extraction
module and a data-driven module. Inspired by the field
theory for human mobility [14], the PEF extraction module
considers that traffic flow in a city is driven by several latent
Potential Energy Fields (PEFs). In each PEF, human mobility
behavior is like water flow driven by the gravity field [15],
[16], i.e., flowing from a high potential location to a low
potential location. To mine latent PEFs from traffic data,
we propose a decomposition algorithm to decompose the
grid-based traffic flow graph into a group of polytree-based
subgraphs. Then, we define each polytree subgraph as a PEF
where each node has a unique relative potential energy,
and traffic only flows from high potential nodes to low
potential nodes. In this way, a complex traffic flow graph
is decomposed into multiple PEFs that follow a simple rule
like water flow driven by the gravity field. The original
traffic flow graph is interpreted as the combined action of
multiple PEFs. We also provide a novel continuous bound
scaling method to prove that the proposed algorithm can
decompose any grid-based traffic flow graph into PEFs.

In the data-driven module, we adopt a spatiotemporal
deep learning model, including a temporal component and
a spatial component, to predict the future PEF states. For
different types of correlations in PEF time series, the model
adopts suitable deep neural network structures. Specifically,
in the temporal component, the model adopts gated recur-
rent unit (GRU) to capture PEF short-term autocorrelation
and adopts dilated causal convolution network (DCN) with
a gating mechanism to capture long-term repeating patterns
in PEF series. In the spatial component, our model extends
graph attention networks (GAT) by weighted directed at-
tention to adapt the directed structures of PEFs. Benefitting
from this correlation-adaptive model structure, the data-
driven module achieves accurate PEF state prediction. The
future traffic flow prediction is finally derived from the
predicted PEFs.

The effectiveness of the proposed model is verified
by extensive experiments over three large-scale real-world
datasets. The results show that the proposed model outper-
forms multiple state-of-the-art baselines. A case study also
confirms that our model can reveal the underlying urban
dynamic mechanisms and interpret the physical process of
traffic flow.

We highlight the key contributions of this work as:
• ST-PEF+ (and its previous version ST-PEF [6]) intro-

duces the field theory for human mobility into the data-
driven traffic flow prediction, which has been rarely studied
in previous research. We use the field theory in our model
to reveal the underlying mechanisms of human mobility. It
improves the interpretability of the prediction model.

1. The previous version of our model was named as ST-PEF [6].

• The proposed PEF decomposition algorithm can con-
vert complex urban traffic flow data as regular PEFs. This
can reduce the complexity of traffic flow data modeling and
help our approach achieve improved prediction accuracy.
Moreover, we conduct theoretical analysis on the proposed
decomposition algorithm, which provided a novel continu-
ous bound scaling method to guarantee that any traffic flow
graph can be decomposed into a group of polytree-based
PEFs.

• We propose a novel spatiotemporal deep learning
network to model the PEF dynamics. The network adopts
correlation-adaptive model structure. We believe this net-
work can be applied to other urban spatiotemporal model-
ing applications.

• Benefitting from the novel PEF decomposition and
efficient deep learning prediction model, our method out-
performs several state-of-the-art baselines. A case study con-
firms that our model can reveal underlying urban dynamic
patterns that are not apparent in present data-driven flow
prediction models.

2 PRELIMINARIES

Before we introduce our model, we first define the traffic
flow prediction problem in our study. Given a city map, we
divide it as a spatial raster.

Definition 1 (Spatial Raster). A spatial raster S ∈ RI×J is
a tessellation of a spatial region with regular I × J grids. Each
cell in the raster is a spatial zone, which is considered a minimum
prediction unit in our study.

Fig. 1(a) shows an example of a spatial raster with 4× 4
zones. For each cell, there are eight traffic flow types, which
are the inflow and outflow to its up, right, down, and left
neighboring zones. For a spatial raster, we construct a flow
graph to model the traffic flow between spatial zones, which
is defined as follows.

Definition 2 (Flow Graph). A flow graph G(VG, EG) is a
weighted directed graph, of which nodes are the spatial zones in
a raster, and edges are the directed traffic flow volume between
adjacent zones. We denote the node as vi ∈ VG and the flow
volume from vi to vj as eij ∈ EG.

Definition 3 (Flow Graph Sequence). We divide time as reg-
ular time slices. For each time slice, a spatial raster has a
flow graph G(t). The traffic flow time series for the spa-
tial raster is expressed as a flow graph sequence G(1:t) =(
G(1), G(2), . . . , G(t)

)
, which is named a flow graph sequence.

In this work, we study a traffic flow prediction problem,
which is defined as follows.

Definition 4 (Traffic Flow Prediction). Given the historical
flow graph sequence of a city from time t − T to t, the traffic
flow prediction problem is to build a function f to generate

Ĝ(t+1) = f
(
G(t−T :t)

)
, (1)

where Ĝ(t+1) is a predicted value of G(t+1).

Usually, the traffic flow prediction paradigm directly
models correlations between G(t−T :t) and G(t+1). We adopt
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Fig. 1. Illustration of basic concepts. (a): Different colors denote different communities in a spatial raster. (b): Community partitioning results with
consideration of the inter-community traffic flow. (c): The flow graph of the larger community can be decomposed into two subgraphs represented
by different colors. (d): The flow polytree is a spanning tree of the corresponding flow graph. The number next to the edge denotes the flow volume.
(e): The relative potential energy of each node can be calculated according to the given zero-potential node. (f): A standard potential energy field
has to maintain all node potential to be positive.

an intermediate concept, i.e., the potential energy field, to im-
prove the performance, generalizability and interpretability
of the traffic flow prediction models. Our model is based
on the field theory for human mobility [14]. The theory
considers that human mobility in cities is driven by a group
of latent potential energy fields, which is similar to water
flow driven by the gravity field.

Considering water flows on the Earth’s surface, the flow
speed and direction are determined by the gravity field on
the Earth’s surface (from high elevation to nearby lower
elevation). Similarly, we can also assume that the traffic flow
between different locations in a city is driven by some latent
“potential energy fields” established on urban functions. For
example, during the morning rush hours, residential areas
have higher potential than working areas, which drives
people to travel from home to the workplace. In contrast,
during the evening rush hours, working areas have higher
potential than residential areas, driving people to travel
from the workplace back home.

To model the latent PEFs and exploit them to improve
the performance of traffic flow prediction, the proposed ST-
PEF+ model designs a PEF extraction module and a data-
driven module. The PEF extraction module is a Potential
Field Extraction algorithm, while the data-driven module is
a Traffic Flow Prediction deep learning model.

3 POTENTIAL FIELD EXTRACTION MODULE

3.1 Motivation of PEF Decomposition

In the potential field extraction module, we propose a
direction decomposition and a polytree decomposition to
convert a flow graph as several PEFs. We assume the traffic
flow in cities is driven by latent PEFs, like water flow driven
by the gravity field. However, traffic flow dynamic is much
more complex than simple physical water flow. The most
significant differences between water flow and traffic flow
involve two aspects:

• First, water flow is unidirectional, but traffic flow is
bidirectional. Water only flows from a high location (a high
potential energy node) to a low location (a high potential
energy node), but traffic flow between two locations is
usually bidirectional. Given two connected nodes r1 and r2
(locations) in the flow graph, water can only flows either
from r1 to r2 in a unidirectional way or from r2 to r1.
However, in traffic flow, there could exist bidirectional flows
between r1 and r2.

• Second, water flow is acyclic. Only driven by the grav-
ity, water cannot flow a cycle such as r1 → r2 → r3 → r1.
However, cyclic flows always exist in traffic flow graphs.

The main challenge caused by the two differences is that
we cannot determine the unique potential energy of each
node as we can in the gravity field. For example, for two
connected nodes r1 and r2 that contain bidirectional flows,
the r1 → r2 traffic flow means the potential of r1 is higher
than that of r2, but the co-existing r2 → r1 flow means the
potential of r2 is higher than that of r1. Similarly, in the
cyclic flow r1 → r2 → r3 → r1, the potential of r1 is higher
than of r3 due to r1 → r2 → r3, but the potential of r3 is
also higher than that of r1 due to r3 → r1.

To fill the gap between water flow and traffic flow, our
potential field extraction module considers a traffic flow
graph as the compound of a group of PEFs. In each PEF, the
traffic flow is unidirectional and acyclic. The complex dy-
namic of the original flow graph is the combined actions of
multiple PEFs. To mine PEFs from flow graphs, we propose
a potential field extraction algorithm consists of three steps:
i) community partitioning, ii) direction decomposition to
handle the bidirectional flow problem, and iii) polytree
decomposition to handle the cyclic flow problem.

3.2 Community Partitioning

As the first step of PEF modeling, Community Parti-
tioning (CP) aims to divide the study region into multiple
communities, each with a smaller footprint (see the green
community in Fig. 1(a)). In this way, we can reduce the size
of the input flow graph and make it easier to model and
clearer to interpret by the latent PEFs.

The object of the community partitioning is to maximize
the intra-community traffic flow and minimize the inter-
community traffic flow. Formally, given the historical flow
graphs of a spatial raster from time slice t − T to t, we
build an accumulated flow graph as G̃ =

∑t
i=t−T G(i).

Then, we partition G̃ into several connected subgraphs (i.e.,
communities) as

{Gc|c ∈ C} = CP(G̃), (2)

where CP denotes the community partitioning, C is the list
of communities, and Gc is the flow graph of community c.

We propose using the improved Girvan-Newman (GN)
algorithm to generate communities [17]. The algorithm pro-
gressively removes edges from a graph until the graph
is divided into enough subgraphs. Edge removal is based
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on the edge betweenness, i.e., the number of the shortest
path between all node pairs that run through the given
edge. To handle edge weights, the improved GN algorithm
adopted by our model considers an edge with weight n as
n unweighted edges.

To include cross-community flow into the PEFs, for each
community, we extend grids that are neighbouring to its
boundary but belong to other communities into the com-
munity. (see gray grids in Fig.1 (b)). This operation makes
neighbouring communities overlap at the boundaries. The
cross-community flow is included in the traffic flow between
extended grids and original community grids, and thus can
be modeled by PEFs.

For more convenient modeling and training, we choose
a fixed community structure for a flow graph sequence. We
assume that communities represent a long-term structure,
and thus we consider a long-time historical data into the
partitioning process. Of course, the current community par-
titioning could be extended to dynamic clustering [18].

3.3 Direction Decomposition
The aim of direction decomposition is to handle the

problem caused by the bidirectional flow in traffic. The
function of direction decomposition is to divide the flow
graph of each community into two subgraphs that only
contain unidirectional edges between connected nodes.

Given the aggregated historical flow graph G̃ of a spatial
raster, we denote the edges from the bottom to the top as a
set E↑ and the edges from the top to the bottom as E↓.
If the total traffic flow of E↑ is larger than E↓, we name
E↑ the major direction and E↓ the minor direction, and
vice versa. In the same way, we define the edge sets E←
and E→ and select a major direction from the two sets.
As shown in Fig. 1(c), each flow graph in the sequence
is decomposed into two subgraphs: a major flow graph
(colored black) consisting of edges in major directions, and
a minor flow graph (colored yellow) consisting of edges in
minor directions. In the major and minor flow graphs, two
adjacent nodes are only connected by unidirectional edges.
Thus, the bidirectional flow problem is solved.

3.4 Polytree Decomposition
The aim the polytree decomposition is to overcome the

cycle flow problem in major and minor flow graphs. Its
function is to decompose a flow graph into a set of polytrees.
A polytree is a directed acyclic graph whose underlying
undirected structure is a tree [19], i.e., it is structurally
acyclic, so it can solve the cyclic flow problem.

3.4.1 Problem Definition
Definition 5 (Flow Polytree). A Flow Polytree T (VT , ET ) is
a directed spanning tree of the flow grid graph G(VG, EG). In
other words, it is a polytree, of which the node set contains all
nodes of G, i.e., VT = VGg

, and the edge set is a subset of the
flow graph’s edge set, i.e., ET ⊂ EGg

.

For instance, Fig. 1(d) is a flow polytree of the major flow
graph (black) in Fig. 1(c). It is a tree having the same nodes
as the major flow graph and its edges are a subset of edges
in the major flow grid graph.

Definition 6 (Polytree Decomposition). Polytree decomposi-
tion is the process of decomposing a flow graph Gg into k flow
polytrees T1, T2, ..., Tk, such that ETi

∩ETj
= ∅ for any i, j and⋃k

i=1 ETi
= EGg

.

In the Definition 6 of polytree decomposition, we require
the edge sets of different polytrees are strictly disjoint.
This constraint may lead to the decomposition without a
solution. To overcome this issue, we make a trick called the
edge-split technique. It splits a directed edge as multiple edges
in the same direction, and the sum of split edges’ flow is
equal to the total flow of the original edge. We partition the
split edges into different polytrees in the decomposition. In
this way, we can ensure the edge sets of different polytrees
are disjoint. Benefitting from this trick, we can theoretically
guarantee that the polytree decomposition always has solu-
tions (see the following theoretical analysis for the proof).

3.4.2 Theoretical Analysis
Here we provide a theoretical analysis to discuss

whether there is a solution to the polytree decomposition
problem. First, we introduce a lemma.

Lemma 1. A finite graph G has k edge-disjoint spanning trees if
and only if ∆G(VG) = 0 and ∆G(X) ≥ 0 for every nonempty
subset X of VG, where ∆G(X) = k (|X| − 1) − |EX | and | · |
is the element number of a set. [20]

Based on the lemma, we propose a continuous bound
scaling method to prove that the polytree decomposition
problem is theoretically guaranteed to be solvable.

Theorem 1. There exists a solution for the polytree decomposi-
tion problem when k = 2.

Proof: According to lemma 1, there are two conditions that
our flow graph has to satisfy: (a) ∆G(X) ≥ 0 for every
nonempty subset X of VG and (b) ∆G(VG) = 0.

Condition (a). From lemma 1, we know that ∆G(X) =
k(|X| − 1) − |EX |, where EX is the edge set of graph X .
The condition (a) can be transformed as

k ≥ p(X) =
|EX |

|X| − 1
. (3)

This means that condition (a) can hold if we set k properly.
It is nontrivial to set a proper k, because the edge number
|EX | is undetermined for any grid graph with |X| nodes.

To address this problem, we propose a continuous bound
scaling method that scales the right term, i.e., p(X) of the
inequation (3) to its upper bound twice to determine its
value. Specifically, we find the upper bound for |EX |, i.e.,
the edge number of a grid graph as follows

|EX | ≤ |Eu
X | = 2|X| − ceil

(
2
√

|X|
)

(4)

where |Eu
X | is the upper bound and ceil(·) is a function that

maps a real number to the least succeeding integer. Taking
Eq. (4) into (3), we have

p(X) ≤
2|X| − ceil

(
2
√

|X|
)

|X| − 1
. (5)

This makes the original inequation almost solved. We con-
tinue to scale the upper bound |Eu

X | as

|Eu
X | ≤ 2|X| − 2, (6)
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Fig. 2. Figures (a)-(f) denote the process of decomposing a flow graph G into two flow polytrees T1 and T2 by Algorithm 1. The number next to the
edge indicates the flow volume, and the colors distinguish different polytree elements.

because
√
|X| ≥ 1. Combining the two scales of Eq. (4) and

(6), we have

p(X) ≤ 2|X| − 2

|X| − 1
= 2. (7)

Till now, we have determined the upper bound of p(X) as
2, indicating k ≥ 2. This means that if we want condition
(a) to hold, we can set k as any integer greater than 2. More
precisely, we can decompose a grid graph into at least 2
edge-disjoint spanning trees.

Condition (b). For a grid graph G, the condition (b)
∆G(VG) = 0 can be transformed into k = EG/(|VG| − 1).
From the continuous bound scaling method (Eq. (4) and (6)),
we know that |EG| ≤ 2|VG| − 2, i.e.,

k =
|EG|

(|VG| − 1)
≤ 2. (8)

This means that the edges of the entire graph G can cover
edges of 2 edge-disjoint spanning trees at most.

Combining the results of condition (a) and (b), we know
the polytree decomposition problem is solvable when k =
2. In particular, the condition (a) ∆G(X) = 2(|X| − 1) −
|EX | ≥ 0 always holds because of Eq. (7). For the condition
(b) ∆G(VG) = 2(|VG| − 1) − |EG| = 0, when there are not
enough edges in G, i.e., |EG| < 2(|VG| − 1), we can make
more edges using the edge-split technique until the obtained
graph satisfies the condition.

It is worth noting that we introduce the continuous
bound scaling method to find solutions to the polytree de-
composition problem. The method can also be generalized
to other grid graph based theoretical analysis.

3.4.3 Algorithm
Based on Theorem 1, we design a Polytree Decomposi-

tion (PTD) algorithm. In the Direction Decomposition step,
our model decomposes a flow graph into a major and a
minor subgraph. The PTD algorithm further decomposes
each subgraph into two polytrees with a comb-like struc-
ture (see Fig. 1(d)). For each polytree, the algorithm first
determines the backbone direction and the tooth direction of
the comb-like structure. Then, the algorithm alternately
extends nodes along the two directions to generate the
polytree. Algorithm 1 gives the pseudocode of PTD. In
the following, we explain the algorithm step by step. To
facilitate understanding, we also exhibit a toy example in
Fig. 2, corresponding to each step of the algorithm. (We also
visualize a real example of polytree decomposition results
on a community of the Beijing Taxi dataset in Sec. V of the
Supplementary Materials.)

Fig. 2(a): In Lines 1-2 of the pseudocode, PTD determines
the backbone direction and the tooth direction of each

Algorithm 1 Polytree Decomposition
Input: Flow graph G(VG, EG).
Output: A set of two flow polytrees {T1, T2}.
1: Set the backbone direction and the tooth direction of T1.
2: Set the backbone direction and the tooth direction of T2 as the

orthogonal directions of T1.
3: for i = 1 to 2 do
4: Initialize Ti = {}.
5: Set the origin node of the greatest flow edge as bi.
6: Bidirectionally extend bi along the backbone direction to obtain

the backbone subgraph Gb.
7: Ti.add(Gb).
8: Bidirectionally extend all nodes in VGb along the tooth direction

to obtain the tooth subgraph Gt.
9: Ti.add(Gt).

10: if VTi
̸= VG then

11: for vt ∈ VGt do
12: Bidirectionally extend it along the backbone direction to get

node m.
13: if m does not form loop in Ti then
14: VGb .add(m).
15: Set bi as m and jump to step 6.
16: for e ∈ ET1 do
17: if e ∈ ET2 then
18: Flow volume of e is halved in T1 and T2.
19: return {T1, T2}.

polytree. For the polytree T1, we set the direction of the
edge with the largest flow volume as its backbone direction,
and set the vertical direction of the backbone as the tooth
direction. For the polytree T2, we set its backbone and tooth
direction are orthogonal to T1. Corresponding to Fig. 2(a),
since the edge e9,10 has the greatest flow volume in the
flow graph, we set the direction r9 → r10 as the backbone
direction, i.e., horizontally from west to east.

Fig. 2(b): Next, we focus on the construction of T1 (T2 is
similar). In Lines 5-7, we set the origin node of the greatest
flow edge as bi, which is the r9 in Fig. 2(b). The algorithm
bidirectionally extends bi along the backbone direction to
obtain the backbone subgraph Gb. Here, the term “extend”
means recursively adding the nodes that are connected with
the newly added nodes into VGb . In Fig. 2(b), we extend the
backbone subgraph as VGb = {r9, r10, r11, r12}.

Fig. 2(c): In Lines 8-9, the algorithm bidirectionally ex-
tends all nodes of Gb along the tooth direction to ob-
tain a subgraph Gt. In Fig. 2(c), we vertically extend the
node r9 to obtain node r5, extend r9 to obtain r6, and
repeat until all nodes in VGb are visited. Then, we obtain
VGt = {r5, r6, r7, r8, r4, r2}.

Fig. 2(d): In Lines 11-15, the algorithm extends new
nodes into the backbone subgraph. Before it, the algorithm
checks at Line 10 whether the current subgraph contains
all nodes, which means its growth terminates. If not, the
algorithm orderly checks nodes in VGt . For each checking
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node, the algorithm tries to once extend one node along the
backbone direction, and check whether the extended node
introduces a loop into T1. If there is no loop, we add the new
node into VGb , and jump to Line 6. In Fig. 2(d), the algorithm
orderly checks the nodes {r5, r6, r7, r8, r4, r2} one by one. If
we extend the nodes r5 to r6, there will be a loop. The same
situation occurs for r6, r7 and r8. Therefore, the first node
can be extended is r4 to r3, so we add r3 into VGb .

Fig. 2(e): When VGb has new nodes, we return to Lines
8-9 to extend the tooth subgraph. In the example, we extend
the node r3 to r1 along the tooth direction. Then, we move
to Line 10, the current subgraph contains all nodes, meaning
the growth of T1 terminates.

Fig. 2(f): All steps in Lines 3-15 are repeated to obtain
T2, which is colored yellow. After the above steps, in Lines
16-18, we half the flow volume of edges that lie in both
polytrees.

In the PTD algorithm, we select the origin node of the
greatest-flow-volume edge as start of our algorithm and
make it a criterion. However, we can start with other nodes
as well. It will generate different polytrees, but impact a little
to our later deep learning models.

3.5 Potential Field Generation

Based on the flow polytree, we define the node potential
energy and the potential energy field as follows.

Definition 7 (Node Potential Energy). In a flow polytree, the
potential energy of node vi is defined as pvi = pvj

+ eij , where
pvi

is the node potential of vi and eij denotes the traffic flow from
vi to vj . By defining a node in a polytree as a zero-potential node,
the relative potential energy of all nodes can be determined.

Definition 8 (Potential Energy Field). A potential energy
field P (T ) is a scalar field defined on the nodes of the flow polytree
T , whereby each node vi has its potential energy pvi . We ensure
that the minimum potential energy of P (T ) is zero.

Fig. 1(d) and 1(e) provide illustrations of how to generate
a basic potential energy field from a flow polytree. Fig. 1(f)
ensures that the minimum potential energy is zero and
generates a potential energy field.

3.6 Potential Field for Inter-community

The methods described above mainly deal with potential
fields within communities, but cannot model potential fields
across several communities. Therefore, in this subsection,
we build inter-community PEFs. First, we define a macro-
flow graph to describe the inter-community traffic flow.

Definition 9 (Macro-Flow Graph). A macro-flow graph
MG(VMG, EMG) is a directed graph, where the node in VMG

is a community, and the directed edges in EMG describe the
aggregated traffic flow between adjacent communities.

In the macro-flow graph, the bidirectional and cyclic
flow problems (see Section 3.1) also exist. Therefore, we
propose a major-minor partition and a general polytree
decomposition algorithm to overcome the two problems
respectively.

Given a bidirectional edge of the macro-flow graph, the
major-minor partition divide its direction with higher flow

into a major subgraph, while the other one into a minor
subgraph. In this way, the macro-flow graph is partitioned
as two sub-graphs. Each sub-graph contains all nodes of
the macro-flow graph and unidirectional edges. The bidi-
rectional problem is solved.

For the macro-flow graph without bidirectional edges,
i.e., the major subgraph or the minor subgraph, we pro-
pose a General Polytree Decomposition (GPTD) algorithm
to decompose it into several edge-disjoint polytrees (see
Algorithm 2). The core idea of the algorithm is to adopt a
modified Kruskal’s minimum spanning tree algorithm [21]
to obtain polytrees from the unidirectional macro-flow sub-
graphs. The Kruskal’s algorithm includes four steps (in
Lines 4-9 of Algorithm 2): i) considering each node of
a macro-flow subgraph as an independent tree, ii) iter-
atively selecting the smallest-weight edge that connected
two independent trees from the macro-flow subgraph, iii)
merging the two independent trees connected by the se-
lected edge, iv) repeating steps ii and iii until all nodes
in the macro-flow subgraph belong to the same tree, and
we can obtain a spanning tree. Since the selected edges
for tree merging come from different trees, the Kruskal’s
algorithm ensures that the resulting spanning tree is acyclic.
Therefore, the cyclic issue could be solved. In the algorithm,
we set the edge weighs as the inverse of traffic flow, i.e.,
wuv = 1/euv,∀euv ∈ EMG.

The GPTD algorithm repeatedly run the Kruskal’s al-
gorithm to extract multiple polytrees until all edges of
the input graph are included into the polytrees (the line
13). However, if we keep the edge weights of the macro-
flow graph fixed, each run of the Kruskal’s algorithm will
produce the same spanning trees. To address this problem,
we propose to dynamically update edge weights of the
macro-flow graph after each run of Kruskal’s algorithm (in
Lines 10-12 of GPTD). Specifically, we denote edges of the
ploytree generated by the i-th run of Kruskal’s algorithm as
ET . We increase the weight w(i)

uv of ET after the i-th run as

w(i+1)
uv = w(i)

uv × ϕ(i) × 2t
(i)
uv , (9)

where ϕ(i) = w
(i)
max/w

(i)
min + 1 is the expansion coefficient,

w
(i)
max and w

(i)
min are the maximum and minimum edge

weights of the macro-flow graph in the i-th run. This co-
efficient expands the weights w

(i)
uv of the edges selected by

the i-th run as the biggest-weight edges in the (i+1)-th run
(to reduce the probability of being selected). Term 2t

(i)
uv is a

scaling factor which exponentially increases the weights of
edges that are selected by previous polytrees. In this way, we
can reduce the selection probability of the edges that have
been selected multiple times in the previous runs. Both the
expansion coefficient and the scaling factor can reduce the
number of overlap edges among polytrees.

We repeat the Kruskal’s algorithm until all edges are
included by the polytrees, i.e., tuv > 0,∀euv ∈ EMG (Line
13). Finally, in Line 14, GPTD evenly assigns traffic flow
of overlapped edges to all involved polytrees to generate
the final polytree set. Having polytrees of the macro-flow
graph, we can generate potential fields for inter-community
flows based on Section 3.5. In this way, our PEF extraction
module are more complete, including the intra- and inter-
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Algorithm 2 General Polytree Decomposition
Input: Macro-Flow graph MG(VMG, EMG).
Output: A set of edge-disjoint flow polytrees MT .
1: Initialize the visit count as tuv = 0, ∀euv ∈ EMG.
2: Initialize the edge weight as wuv = 1/euv , ∀euv ∈ EMG.
3: Calculate the expansion coefficient as ϕ = wmax/wmin + 1.
4: Consider each node of MG is an independent tree.
5: Take the smallest-weight edge euv from EMG.
6: if node u and v come from different trees then
7: Merge the two trees and add euv to the merged tree.
8: Repeat 5 to 7 until all nodes belong to the same tree T .
9: MT .add(T ).

10: for euv ∈ ET do
11: tuv ← tuv + 1.
12: wuv ← wuv × ϕ× 2tuv .
13: Repeat 3 to 12 until tuv > 0, ∀euv ∈ EMG.
14: Evenly assign traffic flow to polytrees containing edge euv accord-

ing to tuv .
15: return MT .

community potential fields that interpret traffic flows from
the micro- and macro-view respectively.

4 TRAFFIC FLOW PREDICTION MODULE

Traffic flow prediction aims to predict the future traffic
flow states using the decomposed historical PEF sequences.
We adopt a two-stage method to achieve this goal. Specifi-
cally, we first design a spatiotemporal deep learning model
to predict the future PEFs and then derive the future traffic
flow based on the predicted PEFs.

The spatiotemporal deep learning model takes decom-
posed PEFs from historical time series as input and predicts
the future PEFs in the next time step. Designing such a
predictive model is nontrivial due to the PEF series contain
multiple types of spatiotemporal correlations. We need to
design different neural network structures to capture differ-
ent types of correlations. To address these challenges, we
design a correlation-adaptive spatiotemporal deep learning
model that consists of a temporal modeling component and
a spatial modeling component. In the temporal modeling
component, we also adopt two types of neural network
structures to capture short-term and long-term temporal
correlations. The proposed temporal model is illustrated in
Fig. 3. In this way, the diversity of correlations in PEF series
can be fully exploited by the data-driven module.

4.1 Temporal Modeling Component
In the temporal modeling component, we classify tempo-

ral correlations as two categories. The first is the short-term
correlations, in which the autoregressive features of the se-
ries are dominant. The second is the long-term correlations,
in which the periodic patterns are dominant. According
to the analysis in the study [22], short-term correlations
and long-term periodicity have different natures. Com-
pared with short-term correlations, the long-term period-
icity knowledge is more generalizable, while the short-term
correlations becomes more important when the time interval
is reduced. Therefore, we adopt an RNN network without
the attention mechanism to capture short-term correlations
in traffic data since RNNs recursively take the recent data as
model inputs. In contrast, we employ the DCN to capture
long-term periodicity since CNNs are good at extracting
repeated patterns from sequence data.
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Fig. 3. Spatiotemporal model for PEF prediction in ST-PEF+.

Short-term Correlation Capturing. We denote the histor-
ical potential energy of a node v as a time series pS

v =
(pv,t−S , · · · , pv,t). To model the temporal dynamics of pS

v ,
we employ GRU [23] to recursively encode the historical
potential energy series as

hv,t = GRU(hv,t−1, pv,t), (10)

where hv,t ∈ RKS is a hidden temporal representation of a
node v at time step t. The GRU models the representation
at t as a function of previous representations, so is very
suitable to capture the autoregressive features of short-term
correlations.

Long-term Correlation Capturing. In urban traffic flow,
there are many long-term temporally repeating patterns. For
example, the rush hours of every weekday are similar to the
days before but showing a significant difference from the
neighbor time steps such as an hour ago. To identify such
repeating patterns, we need to enable the network to model
long-term historical data. However, RNN-based methods
suffer from vanishing and exploding gradient while model-
ing long sequences. To address this challenge, we introduce
dilated causal convolutional network (DCN) [24], [25] to
capture the long-term repeating patterns [26], [27].

DCN is based on 1D convolution but allows an ex-
ponentially large receptive field with an increase in the
number of hidden layers. DCN preserves the causal order
by padding zeros in the inputs so that predictions of the
current time step only involve historical information. Specif-
ically, given long-term historical data of a PEF node, i.e.,
pL
v = (pv,t−L, · · · , pv,t) ∈ RL and a filter θ ∈ Rr , the dilated

causal convolution operator is defined as

D(θ,pL
v ) =

r−1∑
i=0

θi · pv,t−d·i, (11)

where θi is the i-th element of θ and d denotes the dilation
factor. We stack the dilated operator D with an increasing
dilated factor so that the receptive field grows exponen-
tially. This enables our DCN to capture longer dependencies
with fewer layers. By adopting multiple filters in parallel,
different long-term dependencies can be captured by DCN
simultaneously, which enhances the modeling capacity.
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In the implementation, we feed the potential energy se-
quence of the past 3 days into DCN for long-term modeling.
Such a long-term sequence usually contains different pat-
terns in different time periods. For example, when modeling
rush hours, the patterns of regular times should be ignored,
and vice versa. To implement it, we introduce a gating
mechanism to switch patterns in DCN as

cv,t = ReLU(DCN(Θ1,p
L
v ))⊙ σ(DCN(Θ2,p

L
v )), (12)

where cv,t ∈ RKL is the long-term representation of PEF
node v at time step t. σ is the sigmoid activation function
while ⊙ represents element-wise production. Θ1,Θ2 ∈
RNL×KL×r denote the learnable convolution filters and NL

is the number of convolutional layers in DCN. The term
σ(DCN(Θ2,p

L
v )) plays a gating mechanism to control the

information flow ReLU(DCN(Θ1,p
L
v )) of DCN.

Compared to RNN-based methods, DCN handles se-
quences nonrecursively, which alleviates the vanishing and
exploding gradient problem. The stacked dilated operators
enable the model to handle very long history inputs. The
gating mechanism enables the model to switch patterns
for different conditions in a long-term sequence. All these
features make our gated DCN model very suitable for
handling long-term correlations in urban traffic. Compared
to the long-term traffic modeling methods that constructs
multiscale historical time series [7], [8], DCN requires fewer
human efforts and makes the temporal modeling more
automatic and efficient.

We concatenate the long-term representation cv,t
with the autocorrelation representation hv,t generated by
Eq. (10), i.e., nv = [hv,t, cv,t], as the final representation of
polytree node v at time step t.

4.2 Spatial Modeling Component

We utilize the graph attention mechanism called
GAT [28] to capture spatial dependencies. We denote nvk

as the representation of node vk of a PEF. For the time step
t, the GAT iteratively updates the matrix N ∈ RKG×|VT |,
which consists of nvk for all nodes in the PEF, as

N (z) = GAT
(
N (z−1)|t

)
, (13)

where z is iteration number. To involve the temporal infor-
mation in spatial modeling, we initialize the node represen-
tation as n(0)

v = [hv,t, cv,t] for each node vk.
For the specific update process, the GAT sets the weight

between two nodes vi and vj as

α(vi,vj) =
exp

(
w⊤ (

W1nvi +W2nvj

))∑
vk∈Nvi

exp (w⊤ (W1nvi +W2nvk ))
, (14)

where α(·) is the attention score, w and W(·) are the
learnable parameters, and Nvi denotes the neighbors of the
polytree node vi [28].

In the original GAT’s attention defined in Eq. (14), the
input graph is assumed to be undirected. However, in our
model, the PEF has a directed graph structure in the cor-
responding polytree, and the spatial influence between two
polytree nodes (two different locations in reality) is usually
asymmetric. To model this feature, we introduce a weighted

directed attention mechanism into GAT. Specifically, we set
two kinds of attention score for node vi as

α(vi,vj) =
exp

(
eijw

⊤ (
W1nvi +W2nvj

))∑
vk∈LOvi

exp (eikw⊤ (W1nvi +W2nvk ))
,

α(vj ,vi) =
exp

(
ejiw

⊤ (
W1nvi +W2nvj

))∑
vk∈HIvi

exp (ekiw⊤ (W1nvi +W2nvk ))
,

(15)

where α(·) is the attention score, e(·) is the edge weight,
w and W(·) are the learnable parameters, and LOvi and
HIvi denote the neighbors of node vi with lower and higher
potentials, respectively.

Then, we employ the multi-head attention mechanism to
generate the representation of each polytree node using the
attention score defined in Eq. (15), i.e.,

n(z)
vi =

∥∥∥M

m=1
ReLU

 ∑
vk∈LOvi

α
(m)

(vi,vk)
W (m)n(z−1)

vk

+
∑

vk∈HIvi

α
(m)

(vk,vi)
W (m)n(z−1)

vk

 ,

(16)

where ∥ represents concatenation, ReLU is rectified linear
unit activation function, and M is the number of attention
heads. α

(m)
(vi,vk)

and α
(m)
(vk,vi)

are the normalized attention
scores computed by the m-th attention mechanism, and
W (·) are learnable parameters. We name the extended
GAT network as polytree-based graph attention network
(PB-GAT) since its attention involves edge directions and
weights of the corresponding polytree.

4.3 Model Training and Flow Prediction
Finally, we predict the potential energy of polytree node

v at time step t+ 1 as p̂v,t+1 = MLP(nv,t), where MLP is a
multilayer perceptron predictor. We train the spatiotemporal
model using a mean squared error loss function as

L =
∑
v∈VT

(pv,t+1 − p̂v,t+1)
2 . (17)

Repeating the process on all communities, we can obtain the
predicted potential energy fields of every community.

In the PEF extraction module, we decompose a flow
graph into several polytrees. Therefore, a direct training
strategy is to train a deep learning model for each polytree,
but it is time-demanding. To improve runtime efficiency,
we adopt a mixed training strategy. Specifically, in the
temporal component of the deep learning model, the model
parameters are shared by all nodes in different communities
because the temporal traffic correlations are similar for
different locations. In the spatial component, the parameters
are shared by the polytrees with the same backbone direc-
tion in different communities. In this way, the PEFs with
similar spatial structure can share the same parameters.

After the PEF prediction, we derive the flow graph
of each community from the predicted PEF and combine
them to generate the city-wise traffic flow graph as the
final predictions (see Section III of Supplementary Materials
for more details). We also adopt the recursive strategy for
multistep predictions [29], i.e., the predicted value of the t-
th step is recursively used as the input of the prediction at
the (t+ 1)-th step.
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TABLE 1
Datasets Statistics

City Xi’an Beijing Porto

Trajectory 3,784,063 60,828,387 1,891,921
GPS Interval 3s 60s 15s

Duration 31 days 181 days 365 days
Zone Size 550m× 500m 800m× 600m 500m× 500m

Flow Interval 5 min 30 min 60 min

In the experiments, we only focus on the prediction
of the micro-view since it is related to the problem in
Definition 4. The macro-view are used for interpreting inter-
community and long-distance commuting.

5 EXPERIMENT

5.1 Datasets

In the experiments, we evaluate the performance of ST-
PEF+ over three real-world datasets: the Xi’an, Beijing, and
Porto taxi datasets. The three datasets contains raw taxi GPS
trajectories with different sampling intervals (GPS Interval)
collected from different cities. We split the urban areas of
the cities into zones with different sizes and mapped taxi
trajectories as traffic flow among zones. To increase diversity
of experiment setups, we set different traffic flow sampling
time intervals (Flow Interval) for different datasets. We
summarized the dataset statistics in Table 5.1 (See Section
I.A of Supplementary Materials for more details).

5.2 Evaluation Metrics & Baselines

We evaluate our method and baselines by four met-
rics: mean absolute error (MAE), root mean square error
(RMSE), coefficient of determination (R2) and explained
variance score (EVAR). We compare ST-PEF and ST-PEF+
with the following five branches of baselines.

Traditional Time Series Prediction Approaches:
• Historical Average (HA): it models the traffic as a seasonal
process. We average the data of the same time step from
previous 4 weeks as prediction.
• ARIMA: it is a classical time series prediction model. We
set the orders as (3, 0, 1) according to the validation set.

Recurrent Prediction Method:
• FC-LSTM [30]: it is an encoder-decoder framework with
fully connected LSTM as hidden units. Both the encoder and
decoder have one layer of fully connected network with 256
hidden units.

Spatiotemporal Traffic Prediction Model:
• ST-ResNet [8]: it constructs multiple traffic time series
to capture the temporal dependencies and utilize residual
convolution to model the spatial correlations.
• STDN [5]: it learns the spatial-temporal dependency by
integrating LSTM, local-CNN and semantic network em-
bedding.

Traffic Prediction with Graph Neural Networks:
• STGCN [31]: it is a pure convolution-based model that
combines graph convolution and 1D convolution to capture
spatial and temporal correlations, respectively.

• AGCRN [32]: it enhances the traditional graph convolu-
tion by adaptive modules and combines them into recurrent
networks to capture spatial-temporal correlations.

Attentive Traffic Prediction Models:
• STAWnet [27]: it applies a self-attention network to learn-
able node embedding to capture spatial dependencies and
employs dilated convolution for temporal correlations.
• STFGNN [2]: it fuses a data-generated temporal graph
and a predefined spatial graph to extract the hidden spatial-
temporal dependencies.

For the last three branches of deep learning baselines, we
use the same model parameter settings as the open source
code of the original paper. The optimization parameters are
tuned that performed best on the validation set.

In ST-PEF+, the traffic flow is defined on edges. How-
ever, traffic flow prediction baselines are mainly node-level
methods, of which the output layer is a regression predictor
with two outputs, i.e., one for inflow prediction and the
other for outflow prediction. In our experiments, we extend
the output layer as four outputs, respectively correspond-
ing to the outflow to a node’s up, down, left, and right
neighbors. Since the outflow of one node is in the inflow of
another node, in this way the node-level baselines become
applicable to the edge-level prediction.

5.3 Overall Results

Table 2 demonstrates the result comparison. We imple-
ment and run our baselines on the platform LibCity [33],
a unified and extensible library for traffic prediction. More
details on the experimental setups are given in Section I.B
of Supplementary Materials. We replicate each experiment
15 times and report the average results.

Performance Superiority of ST-PEF+. ST-PEF+ signifi-
cantly outperforms other baselines according to the paired
t-test at level 0.01. This demonstrates the effectiveness of
ST-PEF+ in the joint use of potential energy fields and
the correlation-adaptive deep learning. Fig. 4 plots specific
prediction cases to analyze potential reasons of our per-
formance improvement. As shown in the figure, ST-PEF+
captures the trend of rush hours more accurately than other
baselines. Since the dynamic range of traffic flow in the rush
hours is very large, accurate prediction of this part can sig-
nificantly improve the prediction performance. In ST-PEF+,
the traffic flow in different directions are decomposed into
different PEFs, and are modeled by different deep-learning
models. In this way, the traffic flows in rush hours, which
are usually dominated by traffic in one direction, could be
modelled more precisely by the deep-learning part of our
model. We think this is a possible reason of why our method
has significant performance improvement compared to the
baselines.

Performance Improvement over ST-PEF. ST-PEF+ im-
proves ST-PEF by 12.4% in RMSE on average. This result
verifies that the advanced deep learning module, e.g., the
PB-GAT with directed attention and gated DCN capturing
the long-term patterns, contributes a lot to the excellent
performance of ST-PEF+. Without the improved spatiotem-
poral deep learning module, i.e., only using ST-PEF, the
proposed model is difficult to surpass the latest baselines,
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TABLE 2
Performance comparison using four metrics on three datasets. “m” and “h” denote minute and hour, respectively. The results are better with

smaller (↓) MAE and RMSE, but larger (↑) R2 and EVAR.

Metric MAE ↓ RMSE ↓
Dataset Xi’an Taxi Beijing Taxi Porto Taxi Xi’an Taxi Beijing Taxi Porto Taxi
Length 5m 10m 20m 30m 1h 2h 1h 2h 4h 5m 10m 20m 30m 1h 2h 1h 2h 4h

HA 2.032 2.032 2.032 5.241 5.241 5.241 2.610 2.610 2.610 3.840 3.840 3.840 10.587 10.587 10.587 4.672 4.672 4.672
ARIMA 1.987 2.253 2.586 5.125 5.831 6.631 2.573 2.862 3.288 3.763 4.258 4.861 10.301 11.735 13.160 4.606 5.209 6.017

FC-LSTM 1.602 1.975 2.324 4.548 5.112 6.043 2.014 2.469 3.131 2.884 3.653 4.323 9.141 10.478 12.283 3.473 4.572 5.793
ST-ResNet 1.102 1.208 1.322 2.583 3.162 3.975 1.594 1.705 1.853 1.725 1.943 2.208 5.159 6.784 8.826 2.664 2.842 3.168

STDN 1.252 1.326 1.439 3.415 4.342 5.512 1.748 1.946 2.181 2.018 2.147 2.325 7.210 9.392 11.578 2.903 3.242 3.806
STGCN 1.141 1.255 1.422 3.374 4.340 5.418 1.785 1.950 2.179 1.898 2.025 2.314 7.122 9.380 11.322 2.936 3.251 3.803
AGCRN 1.105 1.208 1.373 3.018 3.839 5.152 1.720 1.856 2.087 1.854 1.969 2.271 6.763 8.512 10.793 2.886 3.127 3.642
STAWnet 1.008 1.120 1.269 2.602 3.034 3.866 1.625 1.701 1.814 1.766 1.933 2.181 5.316 6.691 8.545 2.793 2.870 3.061
STFGNN 0.987 1.093 1.233 2.563 2.730 2.945 1.604 1.679 1.761 1.708 1.847 2.009 5.169 5.793 6.566 2.726 2.834 2.975
ST-PEF 1.012 1.110 1.207 2.572 2.731 2.986 1.612 1.751 1.826 1.783 1.867 1.968 5.173 5.762 6.647 2.786 2.910 3.106

ST-PEF+ 0.859 0.921 1.003 2.186 2.375 2.518 1.408 1.513 1.610 1.595 1.663 1.759 4.590 4.941 5.326 2.449 2.592 2.758
Metric R2 ↑ EVAR ↑
Dataset Xi’an Taxi Beijing Taxi Porto Taxi Xi’an Taxi Beijing Taxi Porto Taxi
Length 5m 10m 20m 30m 1h 2h 1h 2h 4h 5m 10m 20m 30m 1h 2h 1h 2h 4h

HA 0.618 0.618 0.618 0.635 0.635 0.635 0.532 0.532 0.532 0.616 0.616 0.616 0.634 0.634 0.634 0.531 0.531 0.531
ARIMA 0.621 0.607 0.584 0.643 0.616 0.587 0.539 0.514 0.440 0.620 0.606 0.584 0.642 0.615 0.588 0.539 0.514 0.442

FC-LSTM 0.706 0.625 0.595 0.670 0.641 0.603 0.626 0.551 0.479 0.708 0.625 0.596 0.671 0.640 0.601 0.624 0.552 0.480
ST-ResNet 0.810 0.795 0.782 0.853 0.814 0.751 0.745 0.711 0.670 0.811 0.797 0.780 0.854 0.816 0.753 0.745 0.711 0.668

STDN 0.797 0.790 0.778 0.805 0.687 0.622 0.701 0.653 0.598 0.798 0.790 0.779 0.804 0.687 0.620 0.702 0.654 0.597
STGCN 0.809 0.796 0.781 0.809 0.686 0.627 0.695 0.650 0.598 0.810 0.796 0.782 0.809 0.687 0.625 0.695 0.651 0.596
AGCRN 0.811 0.801 0.785 0.821 0.745 0.640 0.700 0.674 0.632 0.811 0.802 0.785 0.820 0.746 0.640 0.699 0.673 0.630
STAWnet 0.816 0.810 0.793 0.860 0.823 0.742 0.730 0.705 0.680 0.816 0.809 0.794 0.861 0.823 0.741 0.731 0.704 0.680
STFGNN 0.821 0.813 0.800 0.867 0.851 0.832 0.738 0.718 0.689 0.822 0.811 0.798 0.867 0.852 0.833 0.739 0.717 0.688
ST-PEF 0.818 0.809 0.798 0.865 0.855 0.834 0.731 0.697 0.676 0.819 0.810 0.798 0.864 0.854 0.836 0.730 0.696 0.675

ST-PEF+ 0.840 0.829 0.818 0.904 0.883 0.870 0.802 0.770 0.735 0.842 0.829 0.819 0.905 0.885 0.871 0.800 0.769 0.735

00:00 06:00 12:00 18:00 00:00
21-Jun

06:00

20

40

60

80

100

120

Fl
ow

 v
ol

um
e

Ground Truth
AGCRN
STAWnet
ST-PEF+

08:00 17:00 02:00
28-Jun

11:00 20:00 05:00
29-Jun

0

20

40

60

80

100

Fl
ow

 v
ol

um
e

Fig. 4. Flow prediction cases in rush hours of Porto taxi dataset.

i.e., STFGNN and STAWnet, which were proposed after the
ST-PEF model.

Performance Comparison between Baselines. The
spatiotemporal-based methods tend to have better perfor-
mance than the traditional time series approaches and recur-
rent methods, which suggests the effectiveness of spatiotem-
poral dependencies modeling. Among various baselines,
GNN-based methods have better performance than others,
indicating the rationality of aggregating graph information
into traffic flow prediction. Moreover, the attention mecha-
nism is proven to be effective in traffic prediction.

5.4 Quantitative Analysis
Here, we perform a series of detailed quantitative anal-

ysis on our model to further evaluate the effectiveness of
the major modules. We report the results of metric RMSE
on the Beijing dataset. Results of other datasets are given in
Section II.E of Supplementary Materials.

Effectiveness of Potential Energy Field. We first evaluate
the potential energy field decomposition, which is a core
component of ST-PEF+ and ST-PEF. The PEF eliminates
the bidirectional patterns and cyclic patterns involved in
traffic flow graph so that the traffic patterns are easier to
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Fig. 5. The Quantitative analysis on Beijing dataset using RMSE. The
mean and standard derivation of the 15 runs are plotted in the figure.

capture. To evaluate the effectiveness of PEF, we compare
ST-PEF+ and ST-PEF with two special baselines: ST-Flow
and ST-Flow+, which directly run the spatiotemporal deep
learning module of ST-PEF+ and ST-PEF over the original
traffic flow graphs without converting them into PEFs.
As shown in Fig. 5(a), the performance of both ST-Flow
and ST-Flow+ are worse than ST-PEF, indicating that PEF
decomposition is very necessary for our model.

Effectiveness of Temporal Modeling. We consider three
temporal module variants: (1) DCN only uses dilated casual
convolution networks, capturing the long-term temporal
pattern and ignoring the short-term autocorrelation. (2)
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GRU only considers the short-term part in the temporal
module. (3) Both combines both DCN and GRU for temporal
modeling. Fig. 5(b) shows the comparison results, where
the performance rank follows DCN < GRU < Both. We
can observe that the performance of GRU is better than
that of DCN because short-term autocorrelation generally
plays a more important role than long-term pattern. The
best performance is obtained by the Both variant, indicating
the effectiveness of simultaneously considering short-term
and long-term temporal dependencies.

Effectiveness of Spatial Modeling. We fix the temporal
module as its optimal setting and compare the performance
of the following three variants: (1) N-GAT denotes ST-PEF+
without the attention mechanism, where we keep the node
representation transformation but use the same attention
weights to integrate the neighbors’ information. (2) O-GAT
uses the original implementation of GAT, designed for
undirected graphs, to capture the spatial information. (3)
PB-GAT is our improved version of GAT by incorporating
the polytree context relations and edge information. As
shown in Fig. 5(c), their performance rank is N-GAT <
O-GAT < PB-GAT. N-GAT performs worse than variants
utilizing attention mechanisms, which indicates the neces-
sity of assigning different weights to different neighbors for
better capturing the spatial dependencies. Moreover, PB-
GAT consistently outperforms O-GAT. This demonstrates
the effectiveness of incorporating the edge information of
polytrees into the spatial dependency modeling.

Effectiveness of Community Partitioning. We prepare four
variants to examine the effectiveness of the community par-
titioning component. (1) N-CMM denotes no partition of the
city (i.e., one community). (2) L-CMM uses fewer communi-
ties than the best setting (C = 12) to divide the whole city,
where C = 6. (3) B-CMM uses the best setting to conduct
community partitioning (ie C = 12), while (4) M-CMM uses
more communities, C = 15 specifically. In Fig. 5(d), the
performance rank is N-CMM < L-CMM < M-CMM < B-
CMM. N-CMM performs worst because the urban dynamic
of the whole city is too complex to model, indicating the
effectiveness of the divide and conquer strategy. For the re-
maining three variants using this strategy, it can be observed
that the community partitioning with the best setting (B-
CMM) results in the best performance on flow prediction.
L-CMM may couple multiple real communities into one,
which could couple different spatiotemporal patterns and
make them hard to model. M-CMM divides one community
into multiple incomplete communities, resulting in a slight
decrease in the model performance.

5.5 Case Study

Next, we visualize the potential energy fields learned
by ST-PEF+ using a case study on the Beijing taxi dataset.
The showcase highlights two advantages of our model: PEF
can i) identify functional areas with distinct patterns and ii)
interpret the physical process of traffic flow.

5.5.1 Identification for Functional Area
Fig. 6 shows the spatial patterns identified by the PEFs

that are mined by our method. Here, we use the evening

Residential 

Area Residential 

Area

Working Area

Working Area

(a) Potential Energy

Residential 

Area Residential 

Area

Working Area

Working Area

(b) Flow Volume

Fig. 6. Spatial distribution of key zones identified by potential energy
and flow volume. The background color is used to distinguish different
communities. Each small square is a zone in reality. Pink and yellow
represent high and low values, respectively.

rush hours (i.e., 17:30-19:30) in a weekday as a showcase.
In Fig. 6(a), we calculate the total potential energy of all
PEFs for each node, and mark the nodes with top 4% energy
as pink as well as the bottom 4% as yellow on the map. As a
comparison, we also calculate the total outflow − inflow
for each node, and mark the top and bottom 4% nodes
in Fig. 6(b). The raw distribution of PEF and flow are given
in Sec. II.F of Supplementary Materials.

We can observe that potential energy can identify func-
tional areas with distinct patterns (e.g., working areas and
residential areas) whereas the flow volume cannot. The
reason is that the potential energy can naturally charac-
terize the source and sink of a dynamical system. In ur-
ban dynamics, influenced by human mobility patterns, the
working area is a sink area in the morning and a source
area at night, while the residential area is the opposite.
On the contrary, the patterns detected by the flow volume
(outflow − inflow) are much more fragmented. A possible
reason is that traffic components in PEFs are purer than the
original flow volume. The feature makes pattern identifica-
tion for PEFs easier, while for original flow volume, these
patterns are hidden in mixed traffic data.

The patterns shown in Figure 6 of the mainbody may
also be described by other deep-learning methods, such as
CNN, RNN or GNN. Nevertheless, as shown in Fig. ??(a)
and (b), the patterns revealed by PEF have clear physical
meaning, i.e., the potential energy that drives people to
move from high potential locations to low potential lo-
cations. Oppositely, the patterns mined by deep-learning-
based methods, such as CNN, RNN or Graph-based meth-
ods, do not have such a physical interpretation.

5.5.2 Interpretation for Traffic Flow
Here, we show how the PEF interprets the physical

process of traffic flow. In our model, we divide the whole
city as several communities and build PEFs over two lev-
els, i.e., intra-community and inter-community, so we also
demonstrate interpretation of our model for both intra-
community and inter-community traffic.

For Intra-community Traffic. In Fig. 7, we calculate the total
potential energy of all PEFs for each node on weekdays and
weekends. The high potential nodes and the low potential
nodes are marked using pink and yellow color respectively.
Fig. 7(a) and 7(b) demonstrate the potential energy tidal effect
revealed by PEFs in the Beijing city. Here, we use circles
to mark clusters whose potential energy is overturned at
the morning peak and evening peak, and use arrows to
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Fig. 7. The spatial distribution of potential energy in each community.
The arrows mark the flow direction. The blue circles mark the clusters
whose potential energy is overturned in the morning and evening.

(a) Weekday (b) Weekend

Fig. 8. The temporal dynamics of potential energy on weekdays and
weekends.

imply the flow direction driven by the potential energy,
which points from high potential zones to low potential
zones. As shown in Fig. 7(a), on the weekday morning,
driven by the potential energy, people usually come from
the suburban areas where they live (pink zones with high
potential) and go to the downtown areas where they work
(yellow zones with low potential). However, at the evening
peak in Fig. 7(b), the flow trend reverses. People leave
working areas for residential areas. Regarding the weekend,
the phenomenon does not exist over the whole city but
in two areas, i.e., shopping streets and train stations. In
the morning (Fig. 7(c)), the potential energy drives people
to shopping streets (e.g., Xidan and Wangfujing) and train
stations (e.g., Beijing South Railway Station) because these
areas are under low potential. In the evening in Fig. 7(d),
the potential energy of these areas become high and drive
people to leave. Some go to residential areas and some go to
entertainment areas such as the Sanlitun Bar Street.

In Fig. 8, we further demonstrate the temporal dynamics
of potential energy in some key areas on weekdays and
weekends. As shown in Fig. 8(a), on weekdays, the working
area (the area (A) in Fig. 7(a)) has lower potential energy
than the residential area (the area (B) in Fig. 7(a)) in the
morning rush hours and higher potential energy in the
afternoon. In Fig. 8(b), on weekends, the potential energy
of shopping streets (Wangfujing, Xidan) and railway sta-
tions (areas labeled on the Fig. 7(c)) is low in the morning

(a) Weekday, 7:30-9:30 (b) Weekday, 17:30-19:30

Fig. 9. The spatial patterns of potential energy for inter-community traffic.

and then fluctuates three times from 10:00 to 22:00 (ante-
meridiem, afternoon, and evening). For residential areas,
the potential energy remains relatively low, indicating that
home is always an attractive place for people on weekends.

For Inter-community Traffic. In Fig. 9, for each node,
we calculate total inter-community potential energy, which
is the potential sum of intra-community PEFs and inter-
community PEFs. In Fig. 9, the top and bottom 4% nodes are
marked using pink and yellow color. During the morning
peak, we can see a low potential energy area located at
northwest region of Beijing, which is Zhongguancun Indus-
trial Park, i.e., the China’s Silicon Valley. This area attracts
many inter-community commuters from the southern re-
gion, which is a growing residential area of Beijing. During
the evening rush hours, the southern region becomes a
low potential area and attracts inter-community commuters
home from the northwest region. The phenomenon indi-
cates that the tidal effect also exists in long-distance com-
muting.

6 RELATED WORK

Data-driven Traffic Flow Prediction. Existing works on
data-driven traffic flow prediction can be divided into
two categories: shallow statistical models and deep learn-
ing models. Shallow statistical models include time series
analysis (e.g., ARIMA family [34]), spatial models (e.g.,
Markov random field [35]) and spatiotemporal models (e.g.,
STAR [36]). These approaches assume traffic data follow
certain distributions and may not capture the nonlinear
and dynamic relationships in traffic data. Deep learning
models for traffic prediction start from modeling temporal
dynamics by RNN and its variants [37], [38]. However,
these models treat traffic data of different roads as in-
dependent sequences. To fully exploit spatial information,
the spatiotemporal model came into being, which has two
branches: grid-based and graph-based. For the grid-based
branch, eRCNN [39] first introduces CNN model into traffic
prediction. ST-ResNet [8] treats a traffic flow grid as an
image and utilizes residual CNN to explore the spatial
information, while the temporal dependencies are explicitly
considered in three views. Graph-based approaches believe
that traffic networks usually have a non-Euclidean struc-
ture [40]. Thus, graph neural networks have been proposed
for traffic flow prediction. Examples include original graph
convolution [10] and graph convolution with an attention
mechanism [41]. Recently, some work [27], [32], [42] focused
on generating the graph structure purely from traffic data
rather than using a predefined road/sensor network with
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context information. Deep learning models have shown
promising prediction accuracy as compared to traditional
statistical models. However, they are not easily interpretable
and lack revealing the mechanism of traffic flows.

These are some literatures employ traffic flow graph de-
compositions for gathering event detection [43], [44]. They
extract k-dominant directed acyclic graphs (DAGs) from
the traffic flow graph to efficiently and effectively capture
important gathering events. These works demonstrate that
decomposing a traffic flow graph into subgraphs is valuable
for traffic data analysis. Along this direction, we further
decompose the traffic flow graph as a stricter version of
DAGs, i.e., polytrees-based PEF. Compared with the DAG-
based works, our model has tighter physical constraints,
and thus is suitable to more general traffic flow analyzing
tasks, such as traffic flow prediction.

Statistical Physics Model for Human Mobility. The lit-
erature on statistical physics theories for traffic flow and
human mobility understanding includes the gravity model,
the radiation model, and the field theory. The gravity model
assumes that the traffic flow volume between two locations
increases with the locations’ populations while decreases
with the distance between them [45], [46]. It draws an
analogy with Newton’s law of universal gravitation, so
it is named as the gravity model [11]. Inspired by the
radiation and absorption processes of energy, the radiation
model [12], [13] considers extra factors that may affect the
traffic flow between two locations, such as job opportu-
nity [47]. Recently, along the gravity model, the field theory
further assumes that traffic flows are driven by a field where
each location has a potential and people move from high po-
tential locations to low potential locations [14]. Compared to
deep learning models, statistical physics models can capture
the underlying mechanisms of human mobility and thus
have better interpretability and generalization. However,
they usually deliver unsatisfactory prediction performances
because they fail to capture the dynamic spatiotemporal
dependencies across different locations and time periods.

Urban Computing. Our work also fall into the research
category of urban computing. Urban computing aims to
address the issues caused by rapid urbanization, e.g., urban
flow prediction [48], public safety maintenance [49], [50],
urban functional region recognition [51], urban dynamics
understanding [52], epidemic control and prevention [53].

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced the statistical physics the-
ories for human mobility into data-driven deep learning
to design high performance and interpretable traffic flow
prediction model. The proposed model, namely ST-PEF+,
consisted of a PEF extraction module and a data-driven
module. The PEF extraction module decomposed complex
traffic flow data as polytree-based potential energy fields. In
the data-driven module, we designed correlation-adaptive
deep neural network structures. Extensive evaluations on
three real-world traffic datasets showed that the proposed
model outperforms multiple state-of-the-art baselines. Case
studies confirmed that our interpretable model can reveal
underlying urban dynamic patterns. There are several fu-
ture works, e.g., performing dynamic community partition-

ing and generalizing our framework from a grid graph to a
realistic road network graph, etc. Of course, using the PEF is
just one way of interpreting traffic flow, but not necessarily
the only way, e.g., just simply decomposing the traffic flow
into several flow graphs without the constraint of “PEF”
will also be interpretable. Studying other decomposition
methods is also a direction of the future works.
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